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Abstract 

Production planning of an open-pit mine is a procedure during which the rock blocks are assigned to 

different production periods in a way that leads to the highest net present value (NPV) subject to some 

operational and technical constraints. This process becomes much more complicated by incorporation of the 

uncertainty existing in the input parameters. The commodity price uncertainty is among the most significant 

factors, whose effects cannot be mitigated through further exploration or investigation. The present work 

introduced a new approach for integration of the commodity price uncertainty into long-term production 

planning of open-pit mines. The procedure involves solving the problem by the integer programming method 

based on a series of economic block models that are realized based on the sampled prices from commodity 

price distribution function using the median Latin hypercube sampling method. The results obtained showed 

that the new methodology is able to reduce the risks and the net present value of the new approach at a 

confidence level 80% more than the conventional methods. 

 

Keywords: Open-Pit Mine Production Planning, Commodity Price Uncertainty, Uncertainty Propagation, 

Latin Hypercube Sampling. 

1. Introduction 

A global challenge in the years to come is the 

environmentally-friendly and financially-

attractive provision of exhaustible resources 

(minerals) to meet the ever-increasing demand by 

the today’s high-tech society. Currently, surface 

mining accounts for a significant proportion of the 

produced minerals. The open-pit mining process 

starts with a small digging into the ground, called 

pit, and converts into larger and larger pits till the 

designed shape of the mine called ultimate pit 

limit [1]. 

The goal of an open-pit mine production planning 

is to find the optimum sequence of the mining 

blocks that leads to the highest net present value 

(NPV) of the annual cash flows, while meeting 

the technical constraints such as the mining and 

processing capacities and sequencing constraints 

[2]. Production planning for open-pit mining 

operations is a key factor in determining returns 

on investments of hundreds of millions of dollars. 

In the mine production planning, the mineral 

deposit is represented as a 3D array of blocks, 

each of which represents a volume of material that 

can be mined. Each block has a weight and a 

metal content interpolated using the information 

obtained from exploration drilling [3]. In this 

regards, two distinct and important decisions must 

be made about each block of the model during the 

production planning process [4]: 

 If the block should be mined by the end of 

mine life or not? 

 If yes, when should it be mined? And once it is 

mined, to which destination should it be 

hauled? 

The first of these questions is answered by the 

ultimate pit limit (UPL) problem in the mining 

literature. After determination of the ultimate pit 

contour, the next widely-studied mine 

optimization problem type is to answer the second 

question: when the blocks should be extracted 

http://www.sut.ac.ir/en/showpage.aspx?id=17
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over time periods so that the total net present 

value is maximized [5]. In the mining community, 

this problem type is called mine production 

planning, and is usually implemented in three 

levels of planning time frames: 

 Long-term planning, which may cover a period 

of 5 to 10 or even up to 30 years to answer the 

overall development questions. 

 Medium-term planning, which concerns a 

shorter period of 3 to 5 years to provide a 

forecast of the company’s development over 

the coming few years in terms of the 

feasibility, profitability, and financing. 

 Short-term planning, which focuses on a 

production period of some days to few years to 

ensure achieving the production properties. 

Studies on the deterministic version of open-pit 

production planning have been started since 1968 

[6], and several methodologies have been 

invented so far such as integer programing [4,7], 

mixed integer programing [8, 9], dynamic 

programing [10], and metaheuristic method [11-

13], where the problem input parameters are 

assumed to be certain and exactly known 

(deterministic) in all approaches. However, in a 

real scale, it is a multi-variable optimization 

problem that requires a huge amount of 

computational resources to be solved, and 

incorporation of the uncertainties makes the issue 

much tougher to be overcome. 

The sources of uncertainties in a mining projects 

can be categorized in three major classes: 

geological, technical, and economical. From 

another point of view, they could be classified as 

those that arise from the nature of the variables 

and those that are too expensive to be mitigated. 

For example, commodity price is a variable whose 

uncertainty arises from its nature, and its exact 

determination is not possible for the future years. 

In contrast, metal grade inside the ore body is a 

variable whose uncertainty would be diminished 

by spending time and money on extension of the 

exploratory studies [14]. Taking all these 

uncertainties in to account leads to a multi-criteria 

stochastic optimization problem that ends in a 

complex mathematical formulation and is very 

costly to be solved. In practice, mine engineers 

usually use heuristic approaches and their own 

engineering judgments to find a feasible sub-

optimal solution based on the fixed input 

parameters. However, a rational mine design 

under uncertainties needs efficient algorithms to 

be developed in order to reduce the human factors 

and include the real circumstances of the mining 

industry. 

Looking over the price fluctuation of raw minerals 

shows that the volatility of the mining product 

prices is much intensive than that of the other 

industrial products. For example, as illustrated in 

Figure 1, the price of copper has been highly 

volatile during the past 30 years, i.e. 1985-2014 

[15]. The variations reached approximately 200% 

from 2004 to 2011, as shown in Table 1. Hence, 

the commodity price uncertainty can clearly play 

an important role in succeeding a production plan, 

and a constant-price-based planning cannot lead to 

an accurate answer and reduce the risks of the 

investment. In this work, we investigated the 

effects of the commodity price uncertainty on 

mine planning, and introduce an approach for its 

propagation into open-pit production planning 

model. 

 

 
Figure 1. Fluctuation of copper price during the past 30 years [15]. 
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Table 1. Copper price changes from 2004 to 2014. 

Year Average price ($/t) Changes compared to previous year Changes compared to 2004 

2004 2,863.47 0.00% 0.00% 

2005 3,676.50 28.39% 28.39% 

2006 6,731.35 83.09% 135.08% 

2007 7,131.63 5.95% 149.06% 

2008 6,963.48 ‒2.36% 143.18% 

2009 5,165.30 ‒25.82% 80.39% 

2010 7,538.37 45.94% 163.26% 

2011 8,823.46 17.05% 208.14% 

2012 7,958.93 ‒9.80% 177.95% 

2013 7,331.49 ‒7.88% 156.04% 

2014 6,863.40 ‒6.38% 139.69% 

 

2. Mine planning considering commodity price 

uncertainty 

Unlike the conventional deterministic mine design 

process, which is usually implemented based on a 

single economic block model, stochastic planning 

of open pits considering commodity price 

uncertainty normally runs according to a series of 

economic block model realizations (Figure 2). 

The subject has been attracted by numerous 

researchers during the last decade, and several 

procedures have been developed, which can 

generally be divided into three main categories of 

mathematical, heuristic, and metaheuristic 

approaches. Mathematical formulations use linear 

programming [16], integer linear programming 

[17-19] or maximum flow [20] for solving a 

stochastic problem. The maximum upside 

potential/minimum downside risk method [21] is a 

leading development among the heuristic 

techniques. It takes the risks of the project failures 

or the potential of the over-expecting gains since 

the existing uncertainties are evaluated through a 

series of deposit realizations. Genetic algorithms 

[22], simulated annealing [23], ant colony 

optimization [1], Tabu search [24], and particle 

swarm [25] metaheuristic approaches have been 

reported to be applied on some case studies 

incorporating the metal grade uncertainty. As 

noticed, the majority of the research works have 

been focused on the integration of the metal grade 

uncertainty, and investigation in the field of 

commodity price uncertainty modeling seems to 

be still needed for further developments. 

 

 

 
(a) (b) 

Figure 2. Economic-block model a. Conventional single model, b. Multiple-block model realizations for 

stochastic planning. 

 
3. Propagation of commodity price uncertainty 

in production planning model 
The assessment and presentation of the effects of 

uncertainty have now become widely recognized 

as important parts of analyses for complex 

systems [26]. At the simplest level, such analyses 

can be viewed as the study of functions of the 

form: 

( )Y f X  (1) 

where the function f represents the model or 

models under study,                is a 

vector of model inputs, and                is 

a vector of model predictions. The goal of an 



Mokhtarian Asl & Sattarvand/ Journal of Mining & Environment, Vol.7, No.2, 2016 

218 

 

uncertainty analysis is to determine the 

uncertainty in the element Y that results from 

uncertainty in the element X. Awareness about the 

volatility nature of the parameter under 

consideration is the first step in any uncertainty 

modeling. For this purpose, the histogram of the 

historical commodity price data was plotted along 

the mine life, and the best probability density 

function (PDF) was fitted on the histogram in the 

proposed procedure. PDF of the commodity price 

data is a continuous function, and production 

planning for all the price values is impractical or 

impossible. Therefore, sampling is used to 

represent a subset of manageable size. The 

process of designing and obtaining a 

representative sample of a desired population 

requires care and accuracy. In simple random 

sampling, there is no assurance that all points will 

be sampled. This problem can be addressed using 

Latin hypercube sampling (LHS). LHS divides 

each input cumulative distribution function into   

equal probability intervals, and selects a sample 

from each interval. This can be carried out in two 

ways. Median Latin hypercube sampling (MLHS) 

uses the median value of each interval (Figure 3), 

whereas random Latin hypercube sampling 

(RLHS) picks a random point from each interval. 

Interested reader could refer to Mckay in 1979 for 

details of LHS [27].  

 

 
Figure 3. Median Latin hypercube sampling method. 

 

Unlike the Monte Carlo (MC) method, the sample 

points in LHS, spread more uniformly over all 

possible values, and distribution of the sample 

points is much closer to the probability density 

function of the population. To compare the 

precision level of MC and MLHS, 100 samples 

were generated from a standard normal (0, 1) 

distribution using each method and computed the 

mean of samples. Result of sampling by MC leads 

to a non-zero mean value, where MLHS estimates 

the mean as exactly zero (Figure 4). A Monte 

Carlo method used for achieving a reasonably 

accurate random distribution need requires a very 

large size sample. In this research work, in order 

to reduce the number of runs, MLHS was used for 

sampling from the commodity price cumulative 

distribution function.  

According to   selected samples from the price 

cumulative distribution and geological block 

model of the deposit,   economic block model 

realizations were constructed, and production 

planning was performed by one of the production 

planning problem-solving methods such as 

mathematical, heuristic, and metaheuristic for 

each created economic block model. In this 

research work, in order to obtain an exact 

solution, the binary linear integer programming 

(LIP) model was used. Then the most promising 

production plan was determined by combination 

of the production schedules and calculation of the 

extraction probability of each block at different 

periods. By drawing the histogram for the net 

present values resulting from   production 

schedules and fitting a distribution function on it, 

the most probable NPV can also be determined. 

Figure 5 illustrates the proposed process, in 

general.
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Figure 4. PDF resulting from MC and MLHS methods. 

 

 
Figure 5. Production planning procedure under commodity price uncertainty conditions. 

 
4. Numerical example 

A hypothetical copper deposit with geological 

block model containing 200 blocks was assumed 

and subjected to scheduling for explaining the 

details of the proposed algorithm implementation 

(Figure 6). Table 2 displays the technical and 

economic parameters that are used for the 

construction of the economic block model. These 

parameters are general, summarized from the 

global data. 

Mining operation was considered to run for 5 

years, and the maximum and minimum mining 

capacities were assumed to be 24 and 18 blocks a 

year, respectively. The maximum and minimum 

processing capacities were considered to be 15 

and 9 ore blocks a year, respectively, and the 

discount rate was presumed to be 4%. Considering 

the mine life, fluctuation of the copper prices were 

collected in the last 5 years (Figure 7). 

The descriptive statistics parameters of daily 

copper price data are displayed in Table 3. The 

histogram of the price data was plotted, and the 

best distribution was fitted on the data (Figure 8). 

The fitted distribution was a three-parameter 

lognormal distribution with the mean of 7.4835, 

standard deviation of 0.45349, and threshold 

(location) parameter of 5728.7. PDF and CDF of 

the fitted distribution can be expressed by 

Equations (2) and (3), respectively. To investigate 

the fitness of the distribution, the probability-

probability (P-P) plot was drawn as Figure 9. 
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where Φ is the cumulative distribution function of 

the standard normal distribution. 

After determination of the copper price 

distribution, the median Latin hypercube sampling 

was used for taking 50 samples from it. The 

statistical description of the samples was 

summarized in Table 4. 

  

  

 

 
Figure 6. Geological block model of the mine. 

 

Table 2. Technical and economic parameters required for construction of the economic block model. 
Parameters Value 

Mill recovery rate 80% 

Mill concentrate grade 28% 

Smelting loss (kg/ton) 10 

Refining loss (kg/ton) 5 

Mining cost ($/ton Rock) 1.5 

Milling cost ($/ton Ore) 5.5 

General and administration cost ($/ton Ore) 0.5 

Amortization and depreciation cost ($/ton Ore) 0.8 

Transport cost of mill concentrate to the smelter ($/ton Concentrate) 30 

Smelting cost ($/ton Concentrate) 92 

Transport cost of the blister copper to the refinery ($/ton Blister 

copper) 
2 

Refining cost ($/ton Blister copper) 184 

Selling and delivery cost ($/kg Copper) 0.01 

General plant cost ($/kg Copper) 0.01 

 

 
Figure 7. Fluctuation of copper prices during the past 5 years [15]. 
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Table 3. Descriptive statistics parameters of daily copper price data. 

Parameter Value Parameter Value 

Sample Size 1260 Min 6091 

Mean 7696 25% (Q1) 7035 

Variance 7.95E+05 50% (Median) 7460 

Standard deviation 891.67 75% (Q3) 8223 

Coefficient of variation 0.11586 Max 10148 

 

 
Figure 8. Histogram of the copper price data and fitted distribution. 

 
 

 
Figure 9. Probability-Probability (P-P) plot. 

 

Table 4. Descriptive statistics parameters of the price samples. 

Parameter Value Parameter Value 

Sample Size 50 Min 6348 

Mean 7693.8 25% (Q1) 7029 

Variance 8.4369E+5 50% (Median) 7507 

Standard deviation 918.53 75% (Q3) 8161 

Coefficient of variation 0.11939 Max 10836 

 

The next step involved construction of the 

economic block model realizations according to 

the selected price samples. The economic value of 

a block is equal to the revenue earned from selling 

the commodity (mineral) content of the extracted 

block less all costs. For example, for a copper 

mine, the economic value of block n is calculated 

as follows: 

[(
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where    is the economic value of block n. 

By changing the commodity price, the block 

economic value will be also variable (Equation 

(5)), and hence, cut-off will not have a constant 

value. The cut-off grades are used to distinguish 

economical ore from non-economical ore. If the 

ore grade is higher than the operating cut-off 

grade, the mined material is sent to the mill, 

otherwise it is sent to a dump as waste. The cut-

off should increase as commodity price falls and 

decrease as price rises, which implies a negative 

correlation between cut-off and price [28]. 

After construction of the economic block model 

realizations based on Equation (5), these models 
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were solved by the binary linear integer 

programming (LIP) method. This method has 

been quite frequently used to solve the production 

planning problem of open-pit mines with the 

objective function to maximize the net present 

value while satisfying different constraints. LIP 

can be formulated as below [29]: 

1 1
1(1

 
)

   
T N

n
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t
t n

n

v
Maximiz x

d
e
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

  (6) 

where, 

T: Number of time periods. 

N: Number of mine blocks. 

   : Binary decision variables of the model 

      if block n is mined in time period t, and 

      if otherwise). 

d: Discount rate. 

Mining capacity constraints: Total tonnage of 

extracted material should be between a pre-

determined upper and lower limit. 
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where, 

  : Tonnage of block n. 

     
        

 : Maximum and minimum 

allowed mining capacity for the period of t. 

Processing capacity constraints: Quantity of ore 

blocks should satisfy processing capacity: 
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where, 

  : Tonnage of ore block n. If the block economic 

value is greater than zero (    ), it will be 

considered as ore. 
     

         
   : Maximum and minimum 

allowed processing capacity for the period of t. 

Reserve constraints: This constraint is 

mathematically necessary to ensure that a block is 

mined only once. 
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Sequencing constraints: The sequencing 

constraints ensure that a block can only be 

removed if all the overlaying blocks have been 

removed in the previous or current periods. 
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(10

) 

where A is the set of pairs (i, j) of blocks such that 

block j is a neighboring block to i that must be 

removed before block i can be mined. 

The main advantage of the LIP model is its ability 

to solve the UPL and long‐term planning 

problems simultaneously. The LIP model was 

solved using a program developed in C++ 

environment and CPLEX library for 50 economic 

block models. For instance, the solution results for 

the minimum, mean, and maximum copper prices 

are displayed in Figures 10 to 12, respectively. 

Then extraction probability of each block for 

being scheduled in different periods of the mine 

life were determined by calculation of the times 

that it has been scheduled in that period. This was 

shown for the block located in the most top-left 

position of the model in Figure 13. Finally, the 

most preferable production plan was constructed 

by combining all the individual schedules and 

designating each block to the maximum extraction 

probability period (Figure 14). 

The best distribution was fitted on the net present 

values of the 50 production plans, as shown in 

Figure 15 and Table 5.  

 

 

 
Figure 10. Production planning for the minimum copper price. 
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Figure 11. Production planning for the mean copper prices. 

 

 
Figure 12. Production planning for the maximum copper price. 

 

 
Figure 13. Extraction probability of the block located in the most top-left position. 

 

 
Figure 14. Final production plan considering commodity price uncertainty. 
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Figure 15. Net present value distribution. 

 
Table 5. Descriptive statistics parameters of NPV. 

Parameter Value Parameter Value 

Sample Size 50 Min 87.816 

Mean 241.96 25% (Q1) 160.66 

Variance 12109 50% (Median) 218.06 

Standard deviation 110.04 75% (Q3) 298.9 

Coefficient of variation 0.45478 Max 619.09 

 

The fitted distribution was a three-parameter 

lognormal distribution with the mean of 5.2117, 

standard deviation of 0.5114, and threshold 

parameter of 33.406. PDF and CDF of fitted 

distribution were expressed by Equations (11) and 

(12), respectively. To investigate the fitness of the 

distribution, the probability-probability (P-P) plot 

was drawn, as presented in Figure 16. The most 

likely net present value where probability density 

function has its maximum value (mode) equals to 

$ 174.61. 
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Average grade changes of the mine versus 

commodity price fluctuation was shown in Figure 

17. As it can be seen in this figure, there is a 

negative correlation between average grade and 

commodity price. 

In order to compare the new approach with the 

conventional constant price methods, the 

production planning was also performed by the 

conventional method (Figure 18 and 19), where 

the commodity price as $/t 6860.29 (equal to the 

mean copper price in 2014) and $/t 7696 (equal to 

the mean copper price in 5 recent years) were 

considered, and net present values of $ 142.64 and 

$ 153.8 were obtained, respectively, which is 

lower than that of the new approach ($ 174.61). 

According to the net present value distribution of 

the new approach (Figure 15), the net present 

value of the new approach at confidence levels of 

85% and 80% were more than $ 142.64 and $ 

153.8, respectively. 

  

 

 
Figure 16. Probability-Probability (P-P) plot. 
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Figure 17. Average grade changes versus commodity price fluctuation. 

 
Figure 18. Mine production planning by conventional method (copper price = 6860.29 $/t). 

 

 
Figure 19. Mine production planning by conventional method (copper price = 7696 $/t). 

5. Conclusions  

The open-pit mine production scheduling is even 

more difficult since the number of blocks is large 

and because the future economic value of the 

blocks is not known at the time decisions are 

made. This yields a large-scale stochastic 

optimization problem. In this work, we proposed 

an uncertainty propagation method based on a 

sampling procedure to solve an important real-

world problem that arises in surface mine 

planning namely the open-pit mine production 

planning problem with commodity price 

uncertainty. Instead of solving a single 

production, the new approach was based on a 

series of the economic block models that were 

constructed based on the sampled prices from the 

commodity price distribution by the median Latin 

hypercube sampling method. Then each economic 

block model was solved by the integer 

programming method, and the schedules were 

combined to obtain the final preferable plan. The 

approach was tested through a hypothetical block 

model, and the results obtained revealed that the 

net present value of the new approach at the 

confidence level 80% was more than that for the 

conventional method. 
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 چکیده:

بیشترین که طوری، بهشود معدن تخصیص داده می های مختلف تولید یی از سنگ معدن به فازها تولید معادن روباز فرآیندی است که طی آن بلوکریزی  برنامه

تر  این فرآیند پیچیده ،ت موجود در پارامترهای ورودییقطع عدمهای عملیاتی و فنی حاصل شود. با لحاظ کردن  ارزش خالص فعلی با در نظر گرفتن محدودیت

تحقیق  کرد. یپوش توان چشم ن نمیآ راتیتأثاست که از بررسی و تحقیق بیشتر در ارتباط با  تیاهم باعوامل بسیار  جمله ازقیمت محصول  تیقطع عدم شود.می

ای از  بر پایه مجموعه مسئلهفرآیند حل  کند. معادن روباز ارائه می بلندمدت تولید ریزیت قیمت محصول در برنامهیقطع عدمحاضر رویکرد جدیدی برای اعمال 

تحقق  انهیم نیلات مربع گیرینمونه روش با استفاده ازگیری شده از تابع توزیع قیمت محصول های نمونه ی اقتصادی استوار است که بر اساس قیمتهای بلوکمدل

درصد  08سطح اطمینان دهند که روش جدید قادر به کاهش ریسک بوده و با  . نتایج حاصل نشان میدنشو حل می حیصح عدد یزیر برنامه روشو با  دنیاب می

 متداول است. های بیشتر از روشارزش خالص فعلی حاصل از روش جدید 

 .گیری مربع لاتین ، نمونهتیقطع عدممحصول، انتشار  ت قیمتیقطع عدم، ریزی تولید معدن روباز برنامه کلمات کلیدی:

 

 


