
 

 

JME 
Journal of Mining & Environment,  

Vol.2, No.2, 2011, 146-156. 

 

 

Estimating the deformation modulus of jointed rock mass under 

multilateral loading condition using analytical methods 

M. Ebadi
1
, S. Karimi Nasab

2*
, H. Jalalifar

3
 

1-Master of rock mechanics, Shahid Bahonar University of Kerman. 

2-Assistant Professor, Mining Engineering Department, Shahid Bahonar University of Kerman,  
3-Associate Professor, Oil and Gas Engineering Department, Shahid Bahonar University of Kerman. 

 

 
Received 18 Jan 2012; received in revised form 9 Mar 2012; accepted 5 Apr 2012 

*Corresponding author: Kariminasab@mail.uk.ac.ir (S. Kariminasab) 

 

Abstract 

Determination of rock mass deformation modulus is very important in different projects, especially in civil 
and mining engineering works. In-situ measurements such as dilatometer, plate load and flat jack methods 
may be applied to determine the deformation modulus. However, these methods are very expensive and 
time- consuming. Analytical methods are very useful approaches which can also be used to estimate rock 
mass deformation modulus. Using these methods, the parameters influencing the rock mass modulus can also 
be evaluated. Analytical methods are based on the resultant displacement of rock mass and joints which are 
finally used to predict the rock modulus. It should be mentioned that none of the available analytical models 
could present a model to consider the effect of lateral stresses on rock mass modulus calculations. Therefore, 
this paper tries to investigate the effect of intermediate principal stress (σ2) and minimum principal stress (σ3) 
on the deformation modulus of jointed rock mass. 

Keywords: Deformation modulus; rock mass; analytical method; laterals stress. 

1. Introduction
Many researchers have carried out various 
laboratory tests to investigate the effect of lateral 
stress on deformation modulus of jointed rock 
mass. For example, Yaji has carried out different 
tests on intact and jointed rock samples of Paris 
gypsum, sandstone and granite types. He has 
presented the results as stress- strain curves and 
failure curves for different lateral stresses. Finally, 
he has suggested an equation for calculation of 
elastic modulus with lateral stress applied on 
intact rock [1]. 
Arora has presented an equation to calculate 
elastic modulus of jointed rock mass using elastic 
modulus of intact rock and lateral stress (σ3) [2]. 
Having carried out a large number of tests, 
Kulhawy developed an equation to calculate rock 
mass elastic modulus using intact rock elastic 

modulus and lateral stress (σ3) [3]. Fahimifar 
carried out triaxial tests on a schist sample and 
found the increase curve of secant modulus at 
50% of failure point for different angles and 
lateral stresses [4]. 
Using wave propagation method through triaxial 
test cell, Homand et al. showed that elastic 
modulus and shear modulus could be exponential 
functions of 1+σ3 and used a mathematical model 
to illustrate their results [5]. Nasseri et al. carried 
out tests on four different rock types. Theresults 
showed that tangential elastic modulus in 50% of 
failure point nonlinearly increases with increase in 
lateral stress for various angles [6]. Li suggested a 
method for the determination of rock mass 
modulus based on the effect superposition 
principle. In this method, deformation modulus is 
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firstly calculated for single joints. Then, the 
equation is presented to calculate deformation 
modulus in a block which contains single and 
multi joint sets [7].  
Kulatilake et al. developed a model to estimate 
rock block strength and deformability in three-
dimensional situation. From the results, the mean 
rock mass strength was found to be 47% of the 
mean intact rock strength. In addition the mean 
rock mass modulus was found to be 51% of the 
intact rock modulus. He found that the level of 
rock mass weakening is due to the presence of 
fractures [8].  
However, lateral stress is not considered in these 
equations. As mentioned above, none of the 
available analytical models could present a model 
to consider the effect of lateral stresses on rock 
mass modulus calculations. Therefore, this 
research tries to investigate the effect of lateral 

stress on deformation modulus of jointed rock 
mass. 

2. Displacement due to a single joint 
A blocky model containing a single joint is 
illustrated in figure 1. If stress is applied on this 
block, normal and shear stresses are developed on 
joint surface. Having calculated the stresses, 
displacement can be calculated. Considering 𝛥𝜎 
as the loading increment, then normal stress 

increase (𝛥𝜎n) and shear stress increase (𝜎𝜏) 
applied on the surface of i

th
 joint are calculated 

from equations (1) and (2) respectively [10]: 
 

𝜎𝛥
 
 𝜎𝛥       (1) 

𝜎𝜏  𝜎𝛥            (2) 

Where, θ is the angle between 𝛥1 strike and 
normal to the joint surface. 

 

 

Figure 1. A block of rock containing a single joint

The displacement due to stresses is the resultant of 
displacements due to all principal stresses 
(maximum principal stress and lateral stress) 
applied on the block, which are calculated in the 

following sections.  It should be noted that    
  

 

and     
  

 are the displacement of i
th  

joint during 

𝛥1  and 𝛥3 along y direction respectively.  

2.1. Displacement determination due to σ1 

Normal and shear displacement increase due to 𝛥1 
are calculated from equations (3) and (4) 
respectively [7]: 
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If displacement in the shear plane (normal and 
shear directions) is projected along the maximum 

stress, the value of i
th
 joint displacement during 𝛥1 

loading is obtained from equation (5) as displayed 
in figure 1 [7]: 
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      ] 

 

(5) 

Where, kni,σ and ksi,σ are normal and shear stiffness 

of i
th
 joint due to 𝛥 stress. It should be noted that 

normal and shear stiffness of rock joints are 
obtained from joint profile configuration which is 
based on test results. These tests show that as the 
normal stress increases, so do the normal and 
shear stiffness [9]. 
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2.2. The effect of σ 3 on displacement 
If σ3 is applied perpendicularly to joint plane, then 

increased normal (𝜎dni) and shear (𝜎dsi) 
displacements due to σ3 are calculated from 
equations (6) and (7) respectively: 

Δ    
   

     
 

  

      
           

(6) 

Δ    
  

     
 

  

      
       

(7) 

In order to calculate displacement of i
th
 joint 

during σ3 loading, the displacement of 𝜎di
3y

 along 
maximum stress is calculated from equation (8). 
According to this equation, shear force due to 
lateral stress is the increasing factor of jointed 
rock mass modulus and normal force due to lateral 
stress is the decreasing factor of jointed rock mass 
modulus. Therefore, if lateral stress increases, the 
deformation modulus of jointed rock mass 
increases (see Figure 1). 
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(8) 

2.3. Calculation of displacement due to σ2 
If σ2 is applied perpendicularly to joint plane, then 

increased normal (𝜎dni) and shear (𝜎dsi) 

displacements due to 𝛥2 are calculated from 
equations (9) and (10) respectively: 
 

Δ    
   

     
 

  

      
           

(9) 

Δ    
  

     
 

  

      
       

(10) 

In these equations, the angle between σ2 and 
normal to the joint plane is the supplementary 
angle of θi (figure 2). 
Having calculated the displacement of i

th
 joint 

during 𝛥2 loading, the value of displacement 𝜎di
2x 

along x is obtained from equation (11): 
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(11) 

Similarly, in order to calculate displacement of i
th
 

joint during σ2 loading, the displacement of 𝜎di
2y

 
along y is calculated from equation (12). 
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(12) 

2.4. Determination of total joint displacement 
In order to calculate the total displacement, the 

displacement due to 𝛥1 is accumulated with the 

displacements due to 𝛥2 and 𝛥3 along y. 

In practice, 𝛥2 and 𝛥3 are perpendicular and 
cannot be normal to joint plane simultaneously. If 

𝜔 is the angle between 𝛥3 and joint plane (figure 
2), the total joint displacement due to three 
stresses applied simultaneously is calculated from 
equation (13). 
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(13) 

It should be noted that when the angle between σ3 

stress and joint plane (𝜔) is equal to 90 degrees, 

only 𝛥3 appears in the equations and 𝛥2 does not 
affect modulus calculations. It is a particular case 
that one of confining stresses is not taken into 
account; however there are numerous cases that 
all axial and confining stresses affect the joint 
confinement and displacement which are 
considered in equation 13. 

3. Prediction of rock mass modulus containing 

a joint set  

The summation of a rock block displacement 
containing one joint set is the summation of intact 
rock displacement and joint set displacement. 
Equation (14) can be used to calculate elastic 
displacement [7]. 

    
   

 
  

(14) 

Where E is Young’s modulus of intact rock and L 
is the sample length. Equation (15) calculates final 

displacement in sample (𝜎d), the summation of 
displacements due to intact rock (equation (14)) 
and joints (equation (13)) [7]. 
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        ∑   
 

 

   

 

(15) 

There are m single joints in a joint set and total 
displacement of the block is due to displacement 
of all these joints and intact rock. Equation (16) 
can be used to calculate joints number along 
sample length (L) (figure (3)) [10]. 

              (16) 

When displacement in sample is calculated, 
deformation modulus of rock block with one joint 
set can be obtained from equation (17). 
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(17) 

Finally, substituting equation (16) in equation (17) 
for one joint set with specified joints number and 
assuming constant joint properties and spacing, 
equation (18) is obtained. 
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4. Estimation of rock mass modulus containing 

several joint sets  
In calculating displacement of a joint set, it is 

assumed that 𝛥3 is perpendicular to the joint plane 

(figure 3). However, when a block contains 
several joint sets, the applied force is not 
perpendicular to the joint plane and only the 
normal component of the force is considered in 
equations. The force component which is parallel 
to the joint plane does not cause vertical 

displacement. Entering 𝜔 in equation (18) results 
in equation (19). 
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(19) 

For the block with N joint sets, total displacement 
is calculated as the sum of elastic displacement of 
intact rock and displacement of each joint set. 
Therefore, considering N joint sets, equation (19) 
is re-written as equation (20). 
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(20) 

If the values of minimum lateral stress (𝛥3) and 

intermediate lateral stress (𝛥2) are neglected in 
equation (20), the equation suggested by Li [7] is 
obtained which shows the accuracy of presented 
calculations (equation (21)). 
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Figure 2. Schematic view of force direction 

 

Figure 3. A block with one joint set and illustrating σ3 loading direction and joint plane 

 

5. Analyses of the results 
In this section, the effect of various factors on 
rock mass deformation modulus is evaluated. In 
order to investigate the effect of each parameter, 
other factors are considered constant. 

5.1. The effect of minimum lateral stress (𝛥3) 

and its loading angle (𝜽) 

The effect of minimum lateral stress (𝛥3) and its 
loading angle (θ) on a schist sample (table 1) is 
investigated considering zero value for 

intermediate lateral stress (𝛥2) (figures 4, 5 and 6). 

In the analysis of each joint set with different 𝜔, 

when minimum lateral stress (𝛥3) is increased, the 
modulus is also increased. The reason is that 1- 

normal stress due to minimum lateral stress (𝛥3) is 
increased resulting in more displacement in joint, 
and 2- shear stress is increased resulting in 
upward displacement of joint. These two 
displacements result in an upward displacement 
which increases the modulus. Approaching 
hydrostatic conditions results in more 

displacement due to minimum lateral stress (𝛥3), 

therefore the modulus reaches its maximum value. 

In each joint set, as the 𝜔 angle approaches 90◦, 

the effect of minimum lateral stress (𝛥3) is 
increased. 
Figures 4, 5 and 6 show, an increase in confining 
stress results in a decrease of the displacement and 
therefore, rock mass modulus increases. 

5.2. The models evaluations for several joint 

sets 

It is considered that three joint sets with different 

𝜔 angles (30
◦
, 90

◦
 and 120

◦
) simultaneously affect 

the rock modulus. The effect of these joint sets on 
modulus ratio for different angles is illustrated in 
figure 7. As can be seen in figure 7, the modulus 
ratio variation is insignificant beyond the loading 
angle greater than 70 degree with increasing the 

lateral stresses (𝛥3). However, with increasing the 
lateral stresses beyond the 70 degree the modulus 
ratio is dramatically increased and approximately 
is the same for all lateral stress ratios. 
 
 

Table 1. Schist properties [9] 

Spacing 

S (m) 

Shear stiffness 

Ks (GPa/m) 

Normal stiffness 

Kn (GPa/m) 

Elastic modulus 

E (GPa) 

Poisson’s coefficient 

 

0.05 231 660 66 0.29 
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Figure 4. Modulus ratio for different stress ratios for 𝛚=30◦ 

 

Figure 5. Modulus ratio for different stress ratios for 𝛚 =90◦ 

 

 

Figure 6. Modulus ratio for different stress ratios for 𝛚 =120◦ 
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Figure 7. Modulus ratio for different stress ratios for three joint sets respectively with 𝛚 =30◦, 𝛚 =90◦ and 𝛚 =120◦ 

 

5.3. The effect of intermediate lateral stress (𝛥2) 

and its loading angle (𝜽) 
If intermediate lateral stress (𝛥2) is applied 
parallel to joint plane, its value does not affect the 
modulus in vertical direction. However, if it is not 
parallel to joint plane, it affects the modulus. For a 
rock mass with one joint set and one of the 
confining compression strengths normal to the 
joint, the other stress is parallel with the joint and 
does not affect the modulus. If rock mass contains 
several joint sets, the effect of intermediate lateral 

stress (𝛥2) needs to be considered. When lateral 

stress (𝛥3) is applied with the angle of 30
◦
 to the 

joint, and assuming constant value of 0.3 for stress 

ratio of 𝛥3/𝛥1 , the effect of intermediate lateral 

stress (𝛥2) on rock mass modulus may be 
considered (figure 8). As can be seen in figure 8, 

increasing intermediate lateral stress (𝛥2) results in 
increasing deforamtion modulus of rock mass. 

5.4. Sensitivity analysis of different factors 

affecting the rock mass modulus 
In this section, sensitivity analysis of all the 
effective factors is studied and for each case, a 
curve is fitted to the data. To do this, a schist 
sample (table 1) is tested with test conditions of 

𝛥3/𝛥1=0.3, 𝛥2/𝛥1=0.6, 𝜔=45
◦
 , keeping all the 

conditions constant and just changing one 
parameter. 

5.4.1. The angle between normal to the joint 

with 𝛥1  
The rock mass to intact rock modulus ratio curve 
for different angles is shown in figure 9. It can be 
seen from the figure that the minimum stress ratio 
value is obtained for zero angle and it reaches its 
maximum value for the angle of 90

◦
.  

 

5.4.2. Rock joints spacing 
In figure 10, the modulus ratio is plotted versus 
joint spacing. It can be seen from the figure that 
rock mass modulus is increased with increasing of 
joint spacing which is due to the less rock 
fracturing. As the figure shows the increase 
beyond the 0.1 m spacing is insignificant. 
However, from the figure it could be seen that the 
rock mass modulus ratio could not reach intact 
rock modulus even at the spacing beyond one 
meter. It should be noted that the curve reached 
top horizontal line at infinity spacing conditions. 

5.4.3. Joint normal stiffness (kn) 
Joint normal stiffness increase results in more 
strength against normal displacement and 
therefore, less displacement occurs and rock mass 
modulus is increased (figure 11).From the figure it 
can be seen that the increase is more significant at 
low range of the joint normal stresses. 

5.4.4. Joint shear stiffness (ks) 
Figure 12 displays the variation of the jointed rock 
mass modulus versus the joint shear stiffness. As 
shown, an increase in joint shear stiffness causes 
an increase in jointed rock mass modulus. In 
addition, it can be found that the joint shear 
stiffness is more effective than the joint normal 
stiffness.  

5.4.5. Intact rock modulus 
The results show that an increase in intact rock 
modulus increases the rock mass modulus (figure 
13). This is due to the less rock displacement as 
the intact rock behavior is in elastic range. 
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5.4.6. Minimum to maximum principle stress 

ratio 
With increasing of the minimum to maximum 

principle stress ratio, the effect of 𝛥3 in models is 
increased and the elastic strain and joints strain, 

which is opposite to 𝛥1, are also increased. This 
causes the increase of rock mass modulus (figure 
14). 

5.4.7. Intermediate and maximum principle 

stress ratio 
that The results show that  an  increase in  the 
intermediate to maximum principle stress ratio, 

increases the effect of 𝛥2 in equations .It also 
increases the elastic strain and joints strain, which 

is opposite to 𝛥1, .This causes the increase of rock 
mass modulus linearly(figure 15). 
It should be noted that as the lateral stresses are 
not applied beyond the elastic yield point of intact 
rock, the intact rock modulus is maintained 
constant for the calculations. That is, the applied 
stresses only compress the rock joints.  

 

 

 

Figure 8. Modulus ratio for different intermediate lateral stress (σ2) 

 
 

  

Figure 9. Modulus ratio for different angles 
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Figure 10. Modulus ratio for different spacing values 

 

  

Figure 11. Modulus ratio for different normal stiffness values 

  

Figure 12. The effect of shear stiffness on modulus ratio 
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Figure 13. Rock mass modulus versus different intact rock modulus 

 

 

Figure 14. Modulus ratio versus different stress ratios 

 

Figure 15. Modulus ratio for different stress coefficients 
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6. Conclusions 
According to the results obtained from the 
developed analytical model, the followings can be 
deduced: 

- Shear and normal stresses due to the 
lateral stresses respectively increase and 
decrease the modulus of jointed rock 
mass. 

- The modulus of jointed rock mass 
increases with the increase of the lateral 
stresses. 

- Increase of the minimum confining stress 
(σ3) and intermediate lateral stress (σ2) 
causes an increase of the jointed rock 
mass modulus. 

- As ω angle approaches the value of 90
◦
, 

the effect of minimum lateral stress (σ3) 
increases. 

- Increasing the angle between joint normal 
and σ1, spacing, joint normal stiffness 
(kn), joint shear stiffness (ks), and 
principle to confining stresses ratio results 
in the rock mass modulus increase. 

- Joint normal and shear stiffness are much 
more effective at low values, less than 
200GPa/m, on rock mass deformation 
modulus and appears almost steady 
beyond this value. 

- Both confining stressess affect the rock 
mass deformation modulus linearly. 
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