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Abstract 

Presence of joints and fractures in rocks strongly influences the behavior of the rock mass by dividing the 

media into smaller units. These structures intensify the potential instability besides the development of 

sliding and rotational movements. The assumption of discontinuum media changes the whole analysis 

conditions in relation to the continuum analysis. Acquisition of geometrical and structural discontinuity data 

alongside their mechanical properties is of paramount importance in a rock mass analysis. Orientation, 

spacing, expansion, and other geometrical characteristics of the rock mass and their relative geometrical 

position to the studied projects influence the pattern and potential of failure. Therefore, inevitably, the first 

step involved in the analysis of rock mass is geometric data collection of the discontinuities as a crucial step 

before analysis. In this study, the traditional data collection methods in structural discontinuities with their 

disadvantages are reviewed. Then the discontinuity data collection based on digital image analysis is 

developed and applied in a case study to several walls of the Choghart iron ore mine. The results obtained 

show that this method has a very good accuracy in assessing the fine structures, and also it collects data in a 

much shorter time. This study, therefore, suggests that the proposed method can be used as a practical 

approach. 
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1. Introduction 

Rock masses usually contain defects and 

geometrical discontinuities. This has no direct 

relation to their inherent and primary properties. 

These defects are generally foldings, foliations, 

bedding planes, cleavages, schistosity, joints, and 

faults [1]. Joints and fractures are often observed 

in all rock environments especially in carbonated 

or sedimentary rocks. Joints directly affect the 

failure mechanism and conditions, fluid flow, etc. 

in rock mass related projects [2]. Therefore, joint 

mapping is used to evaluate the geological 

structures and rock mass classification. It is also 

used for special purposes such as the analytical 

and numerical modeling of rock mass stability, 

rock mass deformation, fluid flow, blasting, rock 

cutting, and support system design [3]. Nowadays, 

joint mapping is facing some basic problems 

including difficulties in discontinuity 

measurements; low speed of mapping and lack of 

accuracy, especially in the traditional methods; 

and difficulties in true structure detection and 

quantification [2]. Furthermore, different sources 

of human errors, machine errors, and other 

complexities challenge the joint mapping [4]. 

Many efforts have been put on solving these 

difficulties. Rossini has used the numerical 

methods to detect discontinuities in 2D noise 

corrupted functions based on the continuous 

wavelet transform [5]. Lemu and Hadjigeorgiou 

have presented a digital face mapping 

methodology to construct the discontinuity trace 

maps from photographs of rock faces. For this 

purpose, the edges have been detected by the 

“Canny” algorithm, and the adjacent points have 

been connected to each other using dilation filters. 

Thinning filters are being applied, and finally, 
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joint sets are being detected by the artificial neural 

network-based classification [6]. Leu and Chang 

have investigated discontinuities in tunnel 

excavation faces using the image processing 

techniques in both the spatial and frequency 

domains [7]. Post has applied various edge and 

line detection algorithms to extract discontinuity 

characteristics from digital images. He applied 

heuristics to detect fracture types and related 

structures, and used geological criteria to specify 

the discontinuity network [8]. Kemeny has 

combined the hough transform and edge detection 

algorithms for joint tracking from digital images, 

proposing a simple classification using the 

detected traces angles [9]. Wang et al. have used 

the image processing techniques along with the 

support vector machine (SVM) to detect and 

classify discontinuities. This algorithm takes 

multiple images as inputs, and then with the help 

of SVM classifiers, trained by many training 

vectors, detects the fractures and classifies them. 

The fractures are tracked based on the multi-level 

approach algorithm. They were reduced image 

noise using low-resolution images, so just thick 

fractures, had a chance to unfold [10]. In another 

study, Nguyen et al. have analyzed fracture 

evolution from inclined flaws (cuts) in a soft rock 

using high resolution digital photographs and 

Digital Image Correlation (DIC). They have 

developed an extended DIC method that allows 

automatic tracing of discontinuities and their 

quantification in terms of the displacement jumps 

along their length [11]. According to Assali et al., 

the manual field survey method deficiencies can 

be overcome using the dense 3D measurement 

techniques such as terrestrial laser scanning and 

optical imaging to obtain a more complete 3D 

model and structural statement. Hence, they have 

developed a semi-automatic process that allows 

3D models to be combined with the results of 

field surveys in order to provide more precise 

analyses of rock discontinuities. They have 

combined 3D data and 2D digital images as a 

support for the structural survey [12]. In a recent 

supplementary study, they have proposed a 

combined approach using both 3D point clouds 

(from LiDAR or image matching) and 2D digital 

images, gathered into the concept of "solid 

image". This product is a connection between the 

advantages of classical true color 2D digital 

images, accessibility and interpretability, and 

particular strengths of dense 3D point clouds, i.e. 

geometrical completeness and accuracy [13]. 

Many other studies have been carried out in 

similar fields. However, it should be noted that 

there exists no commercially available thorough 

and accurate technique to measure all the required 

structural data in discontinuity mapping 

considering the limitations of time, cost, risk, etc. 

The outcome of most of the studies in this field is 

the non-commercial codes not available to others. 

The purpose of this work was the accurate and 

fast mapping of discontinuities in some walls of 

the Choghart iron ore mine. Also the best 

applicable technique in this field will be 

developed in such a way to provide the required 

data for development of stability analyses. 

2. Traditional methods of discontinuity 

mapping 

Usually there is no direct access to underground in 

primary stages of an engineering project. In 

general, outcrops are the main sources of 

engineering and geo-technical characteristics of 

rock masses in these stages [3]. Therefore, 

statistical measurement of structural and 

mechanical data from the outcrops or other faces 

becoming available through underground 

excavation phase should be studied. Applying 

statistical techniques in processing the data 

acquired from the outcrops provides valuable 

information that helps in design stages to simulate 

joints in an area. 

The most conventional and applicable 

discontinuity mapping methods are the scan line 

and window sampling techniques [14]. In the scan 

line method (Figure 1 a), a clean and 

approximately planar rock face is selected that is 

large relative to the size and spacing of the 

exposed discontinuities (roughly 10 to 20 times 

the average spacing). Each scan line tape is 

scanned, starting from the zero end, until a 

discontinuity face is intersected, and then the 

properties of those intersected discontinuities are 

recorded [3]. Window sampling provides an area-

based sample of discontinuities exposed at a given 

rock face. The window sampling technique is 

essentially the same as the scan line sampling, 

except that all the discontinuities visible within a 

defined area of the rock face are measured, rather 

than only those that intersect the scan line (Figure 

1 b) [15]. The most important parameters of 

discontinuities including dip, dip direction, 

extension, infilling materials and percentage of 

infilling, roughness, and joint compressive 

strength are measured. 
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Figure 1. Schematics of measuring structural parameters of discontinuity: a) scan line method b) window 

sampling [16]. 

 

Also an unconventional method of discontinuity 

mapping is the unparalleled boreholes one. This 

method obtains the density and characteristics of 

discontinuities using the least squares method 

[16]. Furthermore, in geo-physical explorations, 

the discontinuities’ geometry is achieved using 

properties of longitudinal waves in a tensor called 

discontinuity tensor [17]. 

All these methods require certain equipment and 

conditions that make data collection difficult and 

time-consuming. Many studies have been focused 

on fast discontinuity mapping in the recent years. 

3. Image discontinuity mapping method 

Sampling difficulties, human bias, safety risks, 

access to rock faces, time and cost limitation, etc. 

are the most major drawbacks of the traditional 

discontinuity mapping methods. In order to 

overcome these shortcomings, the color image 

processing algorithms have been combined with 

the discontinuity mapping principles. Applying 

image processing significantly increases 

measuring speed and accuracy. The stages 

involved in developing this method are explained 

in the following flowchart (Figure 2). 

 

 
Figure 2. Flowchart of image discontinuity mapping method developed in this study. 

3.1. Preparing digital image of outcrop 

The first step involved in developing the image-

based discontinuity mapping is to acquire high-

quality color images from the best outcrops of the 

desired project. For a maximum efficiency, at 

least 8 Mpixel resolution and use of CCD 

(Charged Coupled Device) sensors are being 

suggested in imaging. Moreover, the camera angle 

should be perpendicular to the outcrops strike. 

Due to the need to have a dimension, the outcrops 

should be marked with an ideal scaling tool. The 

images with the least color difference and the 

same lighting must be selected. It should be noted 

that oblique radiation of light can improve the 

techniques. Figure 3 is an example of images 

taken in order to implement this technique on a 

typical jointed outcrop. The images are turned into 

gray scale in order to be prepared for the 

histogram smoothing process (Figure 3). 
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Figure 3. A sample of images taken for discontinuity mapping using image processing. 

3.2. Primary image smoothing 

Image histogram describes the frequency of the 

intensity values that occur in an image. The image 

is preliminary smoothed after converting color 

image to gray scale. In smoothing, the pixels of an 

image are modified, intensity of pixels with lower 

intensity than the adjacent pixels is increased, and 

some low-frequency intensities are neglected, 

leading to a smoother image histogram [18]. 

Three techniques are being used in the smoothing 

process: histogram stretching, histogram 

equalization, and local Gama correction [20]. The 

idea behind histogram stretching is to increase the 

dynamic range of the gray levels in the image 

being processed. Thus histogram stretching 

increases image contrast by specifying the lower 

and upper limits. Here, values in low-high specify 

the bottom 1% and top 1% of all the pixel values. 

Histogram equalization enhances image contrast. 

This allows for areas of lower local contrast to 

gain a higher contrast. Suppose a gray scale image 

{x}, ni as gray level i occurrence. The probability 

of existence of a gray pixel i in the image is: 

(1) ( ) ( ) ,0i
x

n
p i p x i i L

n
      

where L is the number of all gray levels in the 

image (usually 255), n is the number of all pixels 

in the image, and px(i) is the histogram of color i 

amount in the image pixel in normalized interval 

[0,1]. The cumulative distribution function (CDF) 

of px is: 

(2) 
1

( ) ( )
i

x x

j

cdf i p j


  

cdfx is the normalized cumulative histogram of the 

image. The purpose of the histogram smoothing 

process is to produce a conversion in the form of 

y=T(x) to produce a new image {y} by flatted 

histogram (Figure 4). 

The resulting image will have a linear cumulative 

distribution. Therefore, for some constants K, the 

following relation may be deduced: 

(3) ( )ycdf i iK  

cdfy is the normalized cumulative histogram of 

the image. The conversion T maybe calculated 

using Eq. (4). 

(4) min

max min

( )cdf i cdf
T

cdf cdf

 
  

 
 

T is a conversion that changes an input image 

histogram to an output image histogram [19]. 

Implementation of the stretching and equalization 

smoother in an image used in this study is shown 

in Figures 5 and 6. 

 

 

 
Figure 4. Image histogram in smoothing process of light intensity [19]. 
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Figure 5. Histogram smoothing process of an outcrop image with low-high stretching limits of 30 and 199, 

respectively. 

 

 
Figure 6. Histogram stretching smoothing results of an outcrop image with low-high stretching limits of 30 and 

199, respectively. 

 

Histogram equalization and stretching may not be 

a suitable objective, where brightness of some 

areas (or objects) of the image are satisfactory and 

others are not [20]. Thus the local gamma 

correction is being applied as the third 

supplementary smoothing method. In Gamma 

correction, on each pixel of the image that has a 

non-linear effect on luminance we have: 

(5) ( )g u u  

In the above equation, u ϵ [0, 1] denotes the image 

pixel intensity,   is a positive constant introducing 

the gamma value, and      is the new pixel 

intensity after correction. The goal of local 

gamma correction is to estimate the gamma value 

of an image in a local approach. The basic idea is 

the fact that the homogeneity value in an image 

not suffering from gamma distortion has a lower 

value (near to zero). These homogeneity values 

can be calculated by the gray level co-occurrence 

(GLCM) matrix, measuring the probability that a 

pixel of a particular gray level occurs at a 

specified direction and a distance from its 

neighboring pixels. Here, the homogeneity feature 

is extracted using GLCM, P , as follows: 

(6) 

256 256

1 1

( , , , )

1i j

P i j d
Hom

i j



 


 

  

where Hom is the homogeneity, i is the gray level 

at the location with coordinate (x,y), and j is the 

gray level of its neighboring pixel at a distance d 

and a direction   from a location (x,y). The 

gamma value is then estimated by minimizing 

these homogeneities in sub-matrices of the image 

based on [20]. Implementation of the local gamma 

smoother in an image used in this study is shown 

in Figure 7. It is clear that the dark areas have 

become more clear. 

 

Along with smoothing luminance intensity, the 

image noise must be left out. One of the noise 

removal purposes is to eliminate the lines that are 

diagnosed at a later stage due to surface 

roughness. Here, linear, median, winner, and total 

variation denoising filters were examined, and the 

total variation denoising was selected. This is 

based upon the principle that the signals with 

excessive and possibly spurious details have high 

total variation, i.e. the integral of the absolute 

gradient of the signal is high. According to this 
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principle, reducing the total variation in the signal 

subject to it being a close match to the original 

signal removes the unwanted detail, whilst 

preserving the important details such as edges. 

This noise removal technique has advantages over 

the simple techniques such as linear, median, and 

winner, which reduces noise but, at the same time, 

smooths away the edges to a greater or lesser 

degree. By contrast, the total variation denoising 

is remarkably effective at simultaneously 

preserving edges, whilst smoothing away noise in 

flat regions, even at low signal-to-noise ratios 

[21]. Consider the 2D signals y such as images. 

The total variation norm (V) in the isotropic 

version is: 

(7) 
2 2

1 , , 1 ,

,

( ) i i j i j i j

i j

V y y y y y      

The standard total variation denoising problem is 

still of the form: 

(8) min ( , ) ( )
y

E x y V y  

where E is the 2D L2 norm, and λ∈(0,1) is the 

regularization parameter. There are many 

algorithms that solve the variants of this problem. 

A recent algorithm that solves this is known as the 

primal dual method, fully discussed in [22]. 

Figure 8 shows this denoising in the proposed 

image. 

 

 
Figure 7. Local gamma smoothing results of an outcrop image. 

 

 
Figure 8. Denoising an outcrop image using total variation filter with regularization parameter=0.2 and with 

selecting Poisson type of noise. 

3.3. Image edge detection 

Edge detection refers to the process of identifying 

and locating the sharp discontinuities in an image 

[23, 24]. Edge detection is the next step after 

image smoothing. Most edge detection methods 

may be grouped into the two categories of 

gradient-based and Laplacian-based edge 

detection ones. The gradient method detects the 

edges by looking for the maximum and minimum 

in the first derivative of the image, while the 

Laplacian method searches for zero crossings in 

the second derivative of the image to find edges. 

Maximum Euclidean distance, Robert’s cross 

operator, Sobel operator, Canny, Prewitt’s 

operator, etc. are of the most important algorithms 

of edge detection. Based on the results of this 

study, the Canny edge detection algorithm 

achieves the best results in image discontinuity 

mapping. 

Canny algorithm basically detects edges with 

maximum changes of gray intensity. Given a 
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signal of an edge in the image with the jump 

intensity shown in the diagram of Figure 9 (a), its 

derivative (in 1D space with respect to t) creates 

the diagram in Figure 9 (b). Clearly, the derivative 

shows a maximum located at the center of the 

edge in the original signal. Finding these maxima 

results in the image edge detection. This method 

of locating an edge is characteristic of the 

“gradient filter” family of edge detection filters. 

 
Figure 9. Schematic of color variation signal in a) an edge and b) its gradient [25]. 

 

Canny algorithm does not directly derivate the 

image but uses convolution of some operators and 

images. Sobel operator, as in Eq. (9), in the x and 

y directions, is used in this study [25]. 

(9) 

1 0 1

2 0 1

1 0 1

xG

  
 

  
 
   

 

1 2 1

0 0 0

1 2 1

yG

 
 


 
    

 

where Gx and Gy are the applied operators, 

respectively, in the x-axis and y-axis directions. 

These operators can then be combined together to 

find the absolute magnitude and orientation of the 

gradient at each point using Eq. (10). 

(10) 2 2

x yG G G   

The edge orientation (relative to the pixel grid) is 

given by Eq. (11). 

(11) 1tan ( )y

x

G

G
   

It should be considered that, due to the regular 

arrangement of pixels, θ can only have the 

following values: 0° (positive horizontal), 45° 

(positive diagonal), 90° (negative horizontal), and 

135° (negative diagonal). Other values should be 

modified to these values ( ́) (Figure 10). 

 

 
Figure 10. a) Candidate pixels for edge angle calculation b) modification of calculated angles to acceptable values 

[25]. 

 

The gradient of candidate pixels for edge might 

not be locally maximum. These pixels are 

compared to their neighbor pixels in gradient 

direction, and if the gradient of the candidate 

pixels is lower than at least one of their neighbors, 

those candidate pixels are removed. Finally, the 

hysteresis threshold algorithm takes two 

thresholds, a high T1 and a low T2. Any pixel in 

the image that has a value greater than T2 is 

presumed to be an edge pixel, and is marked as 

such immediately. Then any pixel that is 

connected to this edge pixel and that has a value 

greater than T1 is also selected as an edge pixel. 

The values T1=0.5 and T2=0.2 are selected in this 

study. Figure 11 shows the implementation of 

some of the most important edge-detection 

algorithms in the image used in this study. 

It should be noted that there is no concern about 

unrealistic boundaries such as rubbles, shadows, 

and tape line because they are removed during the 

clustering stage. 
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Figure 11. Edge detection of an outcrop image using a) Prewitt’s operator, b) Canny operator, c) Robert’s 

operator, and d) Sobel operator. 

3.4. Determination of joint trace line 

Because of the straight nature of rock joints, edges 

with straight lines should be separated from those 

with curvilinear lines. The Hough transform 

algorithm is used for this purpose [18]. This 

algorithm can connect the separate lines that are 

in one direction, resulting in a trace line. 

In general, any straight line can be represented as 

a point in the Hough space. As illustrated in 

Figure 12 a, a straight line may be presented by 

the angle of normal to the line (θ) and the distance 

from the origin of coordinate system (ρ). In image 

space (x, y), a straight line may be presented by 

Eq. (12). 

(12) cos sinx y    

If θ is in[
  

 
 
 

 
], the parameters obtained are 

unique, and each line in the x-y plane corresponds 

to a point in the θ-ρ plane. Consider a series of 

points {                 }. These points are 

transformed to sinusoids in plane using Eq. (13). 

13)) cos sini ix y    

If a series of points in a space lie on a straight 

line, the corresponding lines in the plane 

transform intersect in a point. This point location 

is equal to the parameters θ and ρ of that straight 

line. Therefore, instead of finding a straight line in 

image space, the intersection points can be found 

in the Hough space. Since the lines in an image 

space are not exactly straight, the curves in the 

parameter space do not intersect exactly at a 

single point. Therefore, Hough space is gridded as 

shown in Figure 12 (b). The measurements are 

done based on this grid. The accuracy of Hough 

transform depends on the cell dimensions shown 

by Δθ and Δρ. 

 

 
Figure 12. a) A straight line components, b) Gridding in Hough space [18]. 
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All the points detected as edge are mapped to 

parameter space, and using Eq. (9), each point 

corresponding curve is obtained in parameter 

space. The cell value increases by one if a curve 

passes through it. After applying all curves, the 

coordinates of the center of the cells with values 

higher than a threshold are considered as 

parameters of a straight line in the space image 

plane [15]. The trace length characteristic (L) can 

be calculated using the distance of the determined 

initial and final points. Figure 13 illustrates the 

application of this algorithm to the detected edges 

by the Canny edge detection algorithm. 

 

 
Figure 13. Implementation of Hough transform algorithm in edge detection, and presenting joint trace lines. 

3.5. Classification of trace lines 

By determination of trace lines, the existing joint 

sets in the image must be calculated. 

Determination of clusters is an important step in 

determining joint sets. Here, the subtractive 

clustering algorithm is used to determine clusters. 

It is a fast, one-pass algorithm used for estimating 

the number of clusters and the cluster centers in a 

set of data. In this algorithm, all points are 

considered as centers, and then the density around 

each point xi is calculated based on Eq. (14). 

(14) 
 

,  for  1   ( )
i j

i

x x
dxj j to number n

rad


   

(15) 
4

1

n
dxj

i

j

dens e



  

radi is the clustering radius in interval (0,1). The 

value for dens shows the density of points around 

each point. The point with the highest value is 

selected as the first joint set center, and this point 

and all points included in the current set are 

removed. The procedure is repeated until all 

points are removed. Following this method, the 

number of joint sets may be appropriately 

determined. The convergence radius increased 

from 0.06 to 0.5 with 0.01 interval steps. The final 

number of clusters is determined when the 

number of clusters does not change in three 

consecutive radii [26]. 

Fuzzy c-means (FCM) algorithm is used to 

determine the center and member of each cluster. 

It is a method of clustering that allows one piece 

of data to belong to two or more clusters. The 

purpose of this algorithm is to assign a fuzzy 

partitioning to a group of characteristics in c 

cluster{       } with representatives 
{       } so that locally minimizes Eq. (16) 

that measures the relation between the clusters 

and groups of clusters’ representatives. 

(16) 

   

1 1

2

1 1 1

( ) ( , )

mn c

ik k i

K i

m pn c
j j

ik k i

K i j

J u x g

u x g

 

  

 





 

Φ

 

where    is the degree of belonging of each 

characteristic k in cluster   , and ∅        is the 

Euclidean distance between a pair of characteristic 

vectors. The parameter m, which is fuzzy partition 

matrix exponent in (1,∞) interval, controls the 

degree of fuzziness of degree of belongings for 

characteristic K. In this presentation, the degree of 

belonging of each characteristic to cluster Pi is 

constant, and gi of Pi cluster is updated using Eq. 

(17) to minimize Eq. (16). When assigning the 

degree of belonging, uik of each characteristic k in 

cluster Pi is calculated using Eq. (18).  

Figure 14 shows the implementation of this 

algorithm in one of the images of rock masses in 

wall of the Choghart iron ore mine. 
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(18) 
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j
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u i c
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










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

 
  
   
  
  
    





 

 
Figure 14. Clustering trace lines in four joint sets using FCM algorithm. 

 

3.6. Description of structural properties of 

joint sets 

Trace lines and classification of joint sets were 

detected following the presented computation 

stages. Now some geometrical properties of joint 

sets may be calculated. The current algorithm can 

calculate orientation, extension, and spacing for 

each joint set and linear density and overall rock 

mass quality index.  

The values for parameter ρ are used to calculate 

spacing. Sorting values in the ascending order, 

one can use the following relation to calculate the 

distance of a joint from its neighbor joints. 

(19) 
1r i is r r    

1l i is r r   

where sr and sl are the spacings from the right and 

left sides, respectively. When there are multiple 

joint sets, the average spacing for the whole rock 

mass may be found using Eq. (20). 

(20) 
1

1 1n

it iS S

  

where St is the average spacing for the whole rock 

mass, n is the number of joint sets, and Si is the 

average spacing of each joint set. The average 

linear density of rock mass may be estimated 

using Eq. (21). 

(21) 
1

av

t

d
S

  

where dav is the linear density of the rock mass 

and St is the average spacing of the rock mass. 

Rock quality index (RQD) may be extracted from 

the digitized lines produced in the edge detection, 

by defining a scan line and measuring segments 

longer than 10 cm. The presented technique in this 

study allows determination of joint extensions as 

well. A joint may be detected as several joints in 

one direction. In order to avoid this problem, 

firstly, the lines in one direction are determined, 

and then the sum of all line lengths is considered 

as the joint extension. 

The mathematical relations between the 3D 

properties of fractures (dip, dip direction, and 

dispersion coefficient) and fractures trace in two 

dimensions. It is assumed that discontinuity 

orientations follow Fisher distribution. Therefore, 

the joint sets are determined by average dip and 

dip direction and Fisher coefficient based on an 

approximate initialization from the traditional 

mapping of some discontinuities. Knowing the 

orientation of slope in the image, traces of these 

joint sets in the outcrop are determined based on 

several geometrical relations. The results are 

compared to the results of recorded traces in 

image processing. An objective function (Eq. 22) 

is used to estimate orientations as an optimization 

problem with more accuracy. The objective 

function is an error function between average (µ), 

standard deviation (σ), and bias (θ) of trace angles 

of mapped joints and average, standard deviation, 

and bias of calculated joints. 

(22) 
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where index T denotes the calculated data by the 

program, and index I stands for the fractures trace 

in the image. The influence coefficients A=0.7, 

B=0.3, and C=0 were used, and the bias effect 
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was neglected. The “particle swarm optimization” 

(PSO) method is used to minimize this function. 

This is a computational method that optimizes a 

problem by iteratively trying to improve a 

candidate solution with regard to a given measure 

of quality. PSO optimizes a problem by having a 

population of candidate solutions, here, dubbed 

particles, and moving these particles around in the 

search-space according to simple mathematical 

formulae over the particle position and velocity. 

Each particle movement is influenced by its local 

best known position but is also guided toward the 

best known positions in the search-space, which 

are updated as better positions found by the other 

particles. This is expected to move the swarm 

toward the best solutions.  

4. Method verification 

The method developed in this study provides a 

new technique that can successfully increase the 

speed and accuracy of the structural data 

collection and analysis of related projects to rock 

discontinuous environments. It has been tried in 

the development of this technique to optimize the 

method, especially in terms of the orientation 

information. The results of traditional 

discontinuity mapping and image discontinuity 

mapping are compared to evaluate the accuracy of 

the results obtained from this method. Figure 15 

shows this comparison for a zone where one of 

the images was previously processed. 

Also Table 1 demonstrates the match error in 

these discontinuity mapping methods. 

In this work, it was tried to calculate the 3D joint 

parameters based on 2D images. Thus the authors 

think that these error values can be acceptable, 

although they suggest that further efforts should 

be made to increase accuracy. 

 

 

 

 
Figure 15. Comparison of joint concentration curves and detected joint sets using a) traditional mapping and b) 

image processing. 

 
Table 1. Match error of orientation parameters obtained by traditional discontinuity mapping and image 

processing. 

 Error in matching (%) 

Parameter Joint set 1 Joint set 2 Average  

Dip (°) 6.56 5.62 6.09 

Dip Direction (°) 5.14 1.54 3.34 

5. Method implementation 

The central iron ore mine (Choghart) is one of the 

largest and oldest iron ore open pit mines in Iran. 

It is located in central Iran. The mine is 132 Km 

SE of Yazd, close to Bafgh. Its pit has walls as 

long as 500 m. The stability of these walls has 

always been a point of interest in the design and 

development stages. Figure 16 shows the location 

of this mine. 

The image processing technique is applied to the 

north walls of this mine to acquire the 

discontinuitiy properties for further stability 

analyses. 15 digital images with appropriate 

quality were taken from 5-m scan lines in 

different locations. The images were analyzed 

separately using the image processing techniques 

mentioned in the earlier sections. Figures 17 and 

18 show the statistical analysis of spacing and 

persistency parameters in the images of one of the 

zones in the walls, respectively. The complete 

results obtained from the analyses of these images 

are demonstrated in Table 2.  

In these analyses, RQD and linear density were 

not measured. 
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Figure 16. Central iron ore mine (Choghart) location. 

 

 

 
Figure 17. Frequency density and statistical distribution match of spacing in joint sets a) 1, b) 2, c) 3, and d) 4. 

 

 

 
Figure 18. Frequency density and statistical distribution match of persistency in joint sets a) 1, b) 2, c) 3, and d) 

4. 
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Table 2. Results of discontinuity mapping using image processing of scan lines in north wall of Choghart mine.  

Dip 

Direction (°) 

Dip 

(°) 

Continuity (Cm) Spacing (Cm) 
Joint 

set 

Image 

number Standard 

deviation 

Avera

ge 

Statistical 

distribution 

Standard 

deviation 

Avera

ge 

Statistical 

distribution 

174.16 45.53 34.7 58.2 Normal 12.24 16.16 Normal 1 

1 

203.78 67.34 20.4 28.5 Normal 17.16 25.78 Normal 2 

12.77 88.12 0.31 3.33 Log-normal * 31.7 Normal 3 

46.46 77.55 27.55 47.46 Normal 9.88 16.55 Normal 4 

62.55 69.64 0.65 3.71 Log-normal 0.53 2.54 Log-normal 1 
2 

29.52 10.58 0.58 3.35 Log-normal * 25.7 Exponential 2 

243.30 86.94 0.68 3.62 Log-normal 0.55 2.48 Log-normal 1 
3 

3.06 35.31 29.44 45.08 Normal 0.52 2.43 Log-normal 2 

277.98 87.82 0.63 3.5 Log-normal 0.66 2.54 Log-normal 1 
4 

5.64 19.32 27.12 39.47 Normal 0.47 2.46 Log-normal 2 

52.73 89.67 0.76 4.08 Log-normal 0.56 2.53 Log-normal 1 5 

234.13 65.32 34.61 43.87 Normal 0.74 2.57 Log-normal 1 6 

337.05 27.51 0.88 3.52 Log-normal 0.63 2.48 Log-normal 1 7 

299.52 83.99 0.72 3.22 Log-normal 0.61 2.48 Log-normal 1 
8 

358.97 28.41 * 48.18 Exponential 0.65 2.4 Log-normal 2 

246.71 79.67 21.03 41.48 Normal * 27.38 Exponential 1 

9 

305.74 15.79 10.5 22.2 Log-normal * 40.24 Exponential 2 

358.91 10.83 15.93 37.02 Normal * 31.52 Exponential 3 

223.57 61.89 18.67 36.86 Normal * 33.71 Exponential 4 

192.99 13.3 0.62 3.77 Log-normal 11.76 15.96 Exponential 5 

253.29 76.47 0.56 3.95 Log-normal 0.67 2.56 Log-normal 1 10 

126.28 20.88 22.14 40.8 Normal * 29.29 Exponential 1 

11 
283.93 0 16.8 36.49 Normal 0.73 2.9 Log-normal 2 

104.99 10 11.69 31.33 Normal * 28.33 Exponential 3 

6.3 1.87 22.17 39 Normal * 25.34 Exponential 4 

262.06 75.90 0.49 3.68 Log-normal 0.79 2.83 Log-normal 1 
12 

193.56 15.22 0.85 30.52 Log-normal 0.65 10.52 Log-normal 2 

160.36 18.76 0.65 25.65 Log-normal 0.79 2.83 Log-normal 1 13 

256.51 89.81 0.79 25.36 Log-normal 0.79 2.83 Log-normal 1 14 

19.73 15.19 0.78 25.3 Log-normal 0.79 2.83 Log-normal 1 15 

6. Conclusions 

The image discontinuity mapping was used to 

measure the structural discontinuity data of the 

north wall of the Choghart iron ore mine. The 

purpose of this work was to improve the accuracy 

and speed of measurement, while eliminating the 

human and machine errors. For this, a number of 

algorithms were developed to estimate the trace 

line data of joints by processing an input image of 

the outcrop. This data was utilized to achieve 

information on a traditional discontinuity mapping 

using the statistical techniques and some 

mathematical assumptions.  

The image processing technique was able to 

correctly detect the joint sets of outcrops. It 

provided a detailed and accurate information on 

spacing, orientation, extension, etc. The estimated 

statistical distributions for spacing in most of the 

outcrops were exponential and log-normal. The 

statistical distributions of continuity were mostly 

log-normal and normal. These findings are in 

agreement with other studies [10]. Comparison of 

the traditional and image processing results for 

orientation showed a close agreement. This 

agreement can be further increased. The 

measurements in this study can be used to analyze 

the stability of discontinuous systems in the north 

walls of the Choghart iron ore mine in further 

studies. Therefore, due to the selection of 

discontinuous analysis for this area, and the 

inability of the rock mass quality classification 

systems in this type of analysis, the authors did 
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not consider the qualitative parameters such as 

RMR, RQD, etc. 
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 چکیده:

 توسذعه  ضذمن  سذاتتارها  نیذ ا. اسذت  رگذذار یتأث سنگ توده رفتار بر شدت به تر کوچک یواحدها به طیمح کیتفک با یسنگ یها طیمح در یشکستگ و درزه وجود

 زیمتمذا  وسذته یپ لیذ تحل بذه  نسذبت  کامل صورت به را لیتحل طیشرا ،یوستگیناپ فرض رو نیا از. ندکنیم دیتشد را یداریناپا لیپتانس ،یچرتش و یلغزش حرکات

 ،یریذ گ جهذت . اسذت  تیذ اهم حذازز  اریبسذ  هذا  آن یکیمکذان  تذوا   کنار در ها یوستگیناپ یساتتار و یهندس اطلاعات کسب ،یسنگ یها توده لیتحل در. دکنیم

 و زشیذ ر یالگذو  مطالعذه،  مذورد  یعمرانذ  یها پروژه هندسه با آن ینسب تیوضع و سنگ توده یا درزه یها ستمیس یهندس یها یژگیو ریسا و گسترش ،یدار فاصله

 از یکذ ی عنذوان  بذه  و اسذت  ریناپذذ اجتناب درزه یهندس اطلاعات برداشت سنگ، توده لیتحل در مرحله نیاول در رو  نیا از. دهد یم قرار اثر تحت را زشیر لیپتانس

 روش موجذود،  بیذ معا و هذا  یوسذتگ یناپ یساتتار اطلاعات برداشت یسنت یهاروش یمعرف ضمن پژوهش نیا در. شود یم قلمداد لیتحل از قبل مهم اریبس مراحل

 شذده  گرفتذه  کذار  به چغارت آهن سنگ معدن در موجود یسنگ یها وارهید از یبرت با رابطه در یمورد مطالعه در و توسعه تالیجید ریتصو زیآنال بر یمبتن برداشت

 توانذد  یم نیبنابرا و بخشد یم بهبود را برداشت سرعت موجود، یساتتارها نیزتریر سنجش در مناسب اریبس دقت بر علاوه ،روش نیا که دهد یم نشان جینتا. است

 .شود گرفته قرار استفاده مورد نینو یکیتکن عنوان به

 .درزه نگاری، آنالیز تصویر دیجیتال، معدن سنگ آهن چغارت کلمات کلیدی:

 


