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Abstract 
Anomaly recognition has always been a prominent subject in preliminary geochemical explorations. Among 

the regional geochemical data processing, there are a range of statistical and data mining techniques as well 

as different mapping methods, which serve as presentations of the outputs. The outlier’s values are of interest 

in the investigations where data are gathered under controlled conditions. These values in exploration 

geochemistry indicate the mineralization occurrences, and therefore, their identification is vital. Both the 

robust parametric (based on Mahalanobis distance) and non-parametric (based on depth functions) 

techniques have been developed for a multivariate outlier identification in geochemistry data. In this research 

work, we applied the local multivariate outlier identification approach to delineate the geochemical anomaly 

halos in the Hamich region, which is located in the SE of Birjand, South Khorasn province, East of Iran. For 

this purpose, 396 litho-geochemical samples that had been analyzed for 44 elements were used. The obtained 

results show a good agreement with the geological and mineral indices of Pb, Zn, and Cu in the southern part 

of the area. Such studies can be used by a project director to optimize the core drilling places in detailed 

exploration steps. 
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1. Introduction 

Anomaly identification has always been an 

important issue in geochemical regional 

explorations [1, 2]. Its output is essential in further 

detailed exploratory operational decisions. In fact, 

any uncertainty and risk reductions in the next 

phases depend on the results of the specified 

regional geochemical targets [3]. Especially for 

core drilling, one of the most referenced data 

would be the accurately processed geochemical 

data. Among the regional geochemical data 

processing, there are a variety of statistical and 

data mining approaches as well as different 

mapping techniques, which serve as presentations 

of the outputs [4]. They include convenient 

methods such as statistical distribution thresholds 

of gaussian distribution tails or extremes [5]. 

Extreme values are of interest in the investigations 

where data are gathered under controlled 

conditions. In contrast, geochemists are typically 

interested in outliers as indicators of rare 

geochemical processes. In such cases, these 

outliers are not part of one, and the same 

distribution. For example, in exploration 

geochemistry, samples indicating mineralizations 

are the outliers sought. In environmental 

geochemistry, the recognition of contamination is 

of interest [6]. Outliers are statistically defined as 

[7, 8] values belonging to a different population 

because they originate from another process or 

source, i.e. they are derived from a/some 

contaminating distribution/s [9]. In exploration 

geochemistry, the values within the range (mean± 

2sdev) are often defined as the “geochemical 

background”, recognizing that the background is a 

range, and not a single value [10]. The exact value 

for (mean±2sdev) is still used by some workers as 
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the “threshold”, differentiating background from 

anomalies (exploration geochemistry) or for 

defining “action levels” or “clean-up goals” 

(environmental geochemistry) [11]. In 

geochemistry, traditionally, low values, or lower 

outliers, have not been seen as important as high 

values; this is incorrect because low values can be 

important. In exploration geochemistry, they may 

indicate the alteration zones (depletion of certain 

elements) related to nearby mineral accumulations 

(occurrences). Thus starting geochemical data 

analysis with statistical tests based on assumptions 

of normality, independence, and identical 

distribution may not be warranted [11]. Thus 

methods that do not strongly build on statistical 

assumptions had been the first choice, i.e. robust 

methods like median and median absolute 

deviation (MAD) or using boxplot both proposed 

by Tukey (1977) or thresholds based on  

multi-fractal nature of geochemical data [12, 13]. 

It should be noted that in the literature on robust 

statistics, many other approaches have been 

proposed for outlier detection [14-17, 8]. 

Multivariate outlier detection belongs to the most 

important tasks for the statistical analysis of 

multivariate data. Multivariate outliers behave 

differently from the majority of observations that 

are assumed to follow some underlying models 

like a multivariate normal distribution [18]. They 

are divided into two major categories: (a) global 

outliers that deal with the whole shape of the 

population derived from the bulk of the data, and 

(b) local outliers that are a spatial concept of 

neighborhood around each observation that differs 

from the rest [19, 20]. The deviations of outlying 

observations from the majority of data points can 

also be understood in an exploratory context, e.g. 

by visualizing a measure describing outlyingness 

and inspecting possible deviations or gaps in the 

resulting plot [21]. In this work, we applied a 

method of local multivariate outlier identification 

developed by Filzmoser et al. (2013) to delineate 

the anomaly halos in geochemical exploration. To 

achieve this goal, the litho-geochemical samples 

taken from the Hamich area located in the SE of 

Birjand, Southern Khorasn, east of Iran, were 

studied. It was a part of a regional geochemical 

exploration project carried out by the Iranian 

Industry, Mine, and Trade Organization (IMTO). 

2. Methodology 

The outlying patterns, as stated, may be divided 

into two types, global and local outliers. In a 

general definition, a global outlier is an object that 

has a significantly large distance to its k-th nearest 

neighbor (usually greater than a global threshold), 

whereas a local outlier has a distance to its k-th 

neighbor that is large relative to the average 

distance of its neighbors to their own k-th nearest 

neighbors [9]. Haslett et al. [22] have stated that a 

global outlier is an observation that might have 

non-spatial attributes with significantly differing 

values with respect to the majority of the data 

points. A local outlier is an observation that might 

have non-spatial attributes with significantly 

differing values with respect to its neighbors. 

Usually, a global outlier is also a local one but not 

vice versa [23]. Studies on outlier detection can 

generally be divided into two categories, 

stemming from: (i) statistics and (ii) data mining. 

In the statistical approach, most methods assume 

that the observed data is governed by some 

statistical processes to which a standard 

probability distribution (e.g. Binomial, Gaussian, 

Poisson) with appropriate parameters can be fitted 

to. An object is identified as an outlier based on 

how unlikely it could have been generated by that 

distribution [8]. On the other hand, the data 

mining techniques attempt to avoid model 

assumptions, relying on the concepts of distance 

and density, as stated earlier [23]. For most 

distance-based methods [24, 25],  two parameters, 

called distance d  and data fraction  , are 

required. Following that, an outlier has at least 

fraction  of all instances farther than d from it 

[26]. As both d and  are the parameters defined 

over the entire data, methods based on distance 

can only find global outliers [23]. The most 

commonly used measure of outlyingness is the 

Mahalanobis distance [27]. This multivariate 

distance measure assigns each observation a 

distance to the center, taking account of the 

multivariate covariance structure. Thus for 

observations 1  , . . . ,  nZ Z  in the p-dimensional 

space with center µ  and covariance  , the 

Mahalanobis distance is defined as Eq. 1 [9]. 

     
1/ 2

1

,Σ
Σ  

,       1, , .


  

 

  
t

i i i
MD Z Z Z

for i n


 

 (1) 

Practically, for obtaining a reliable distance 

measure for multivariate data, it is crucial that 

how center µ and covariance   are estimated 

using the data. Classical estimates (arithmetic 

mean and sample covariance matrix) can be 

influenced by outlying observations, and thus 

robust estimates have to be used instead [28,29]. 

A frequently used robust estimator of multivariate 

location and scatter is the minimum covariance 
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determinant (MCD) estimator. MCD looks for a 

subset of observations with smallest determinant 

of the sample covariance matrix [9]. MCD 

estimator is defined as Eq. 2. 

  
1 T

H i H i H

i H

S x x x x
H 

    (2) 

for some specific subset H of  1, , n

observations that minimize the determinant. The 

estimator is robust but not invertible if H p

[30]. Rousseeuw and Van Driessen (1999) have 

introduced a fast algorithm for computing the 

MCD estimator. As a cut-off value for the robust 

Mahalanobis distance, 

  2

;0.975
;0.975

p
chisq p   was suggested, that is 

the square root of the 97.5% quantile of the non-

central chi-square distribution with p degrees of 

freedom. Thus the Mahalanobis distance values 

larger than this cut-off value are considered as the 

potential multivariate outliers. The distance MD is 

limited to identify overall, “global” outliers, but 

not necessarily outliers in a local neighborhood 

[9]. Interestingly, spatial or “local” outliers are 

most often also outlying according to the spatial 

dependence. Usually, it turns out that spatial data 

sets contain positive spatial autocorrelation, which 

means that observations with high (respectively 

low) values for an attribute are surrounded by 

neighbors that are also associated with high 

(respectively low) values. Thus in a positive 

autocorrelation scheme, observations that differ 

from their neighbors do not follow the same 

process of spatial dependence as the main bulk of 

the data. If global outliers are present in the data 

set, they are usually also local outliers, and can 

completely mask other local outliers [9]. Suppose 

some observations in a dataset with two 

geographical coordinates in a square and two 

quantitative attributes as an example. The left plot 

in Figure 1 shows a 2D data, where the majority 

of the points come from a bivariate normal 

distribution. The ellipse corresponds to values of 

 2;0.975 2.72chisq  of the robust Mahalanobis 

distance based on MCD location and scatter 

estimates. Hence, all squares and the filled rhomb 

are outside the ellipse, and thus they are identified 

as global outliers. Hence, all squares and the filled 

rhomb are outside the ellipse, and thus they are 

identified as global outliers. Figure 1 (right) 

shows the spatial X- and Y-coordinates of the 

data. For four selected points (shown by the filled 

symbols), circles are drawn, which correspond to 

a Euclidean distance of 2 units from the points. 

All points within this distance are drawn with the 

corresponding open symbols, and they can be 

considered as the neighbors to the points in the 

center of the circles. Since the same symbols were 

used in the left plot of Figure 1, it is possible to 

see the relation of the points in the variable space 

and in the coordinate space. The filled square and 

all its neighbors (at a distance of 2 units) are 

multivariate outliers. The filled rhomb is a 

multivariate outlier too, but not the neighbors. The 

filled triangle is on the boundary of the cut-off 

value 2.72, and the neighbors (open triangles) are 

far away in the variable space. Finally, the filled 

circle is in the center of the data cloud, but its 

neighbors are very different in the variable space. 

The filled triangle and circle should thus be 

identified as local outliers because their 

neighboring points are very different. The filled 

rhomb and the filled square are already identified 

as global outliers, and their neighbors are different 

for the rhomb but similar for the square [9]. 

Many different methods have been proposed to 

deal with these four types of outliers. Graphics 

such as the variogram cloud [31] and the Moran 

scatterplot [32] are interesting tools for detecting 

local outliers in a univariate framework. Cerioli et 

al. (1999) have used the forward search approach 

to identify spatial outliers in the univariate context 

[33]. However, in a multivariate framework, there 

are a few research works in the literature. One of 

the most recent ones is by Filzmoser et al. (2013) 

that puts forward the use of the variogram cloud 

in a different way. For a pair  , 
i j

c c  of data 

locations, ( ,    1  , . . . ,  ,      )i j n i j  , let us consider 

the geographical Euclidean distance as Eq. 3 [9]. 

     
1/2

,   
t

i j i j i j
ED c c c c c c   

 
 (3) 

The variogram cloud consists of plotting for all 

pairs  , 
i j

c c  and for a single variable  Z , the 

values     
2

1/ 2
i j

Z c Z c  versus  , 
i j

ED c c . 

Thus in this context, Filzmoser generalizes the 

variogram cloud for multivariate data by replacing 

the absolute differences with pairwise 

Mahalanobis distances defined as Eq. 4 [9]. 

     
1/2

1

Σ
, Σ

t

i j i j i j
MD Z Z Z Z Z Z


   
 

 (4) 

This distance measure between all pairs of 

observations accounts for the overall covariance 

structure. The multivariate variogram cloud is a 

scatter plot of     Σ
,

i j
MD Z c Z c  versus the 

geographical Euclidean distances 
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 ,  ,    ,  1, . . . , 
i j

ED c c for i j n . Here, it is used as 

the same index for the observations in the variable 

space and in the coordinate space, i.e. 

  ,    1, . . . , 
i i

Z c z for i n  [9]. Since local 

outliers are supposed to be different from their 

neighbors, one could define a quantile of the non-

central chi-square distribution and count the 

number of neighbors falling into this defined 

range. In case of independence and normal 

distribution, we would expect 10% of the values 

falling inside an ellipse of cut-off value drawn in 

the multivariate space (Figure 1 (left)). 

Consequently, the ellipses in the center of the data 

cloud are smaller than on the boundary, which is 

according to the non-centrality parameter of the 

chi-square distribution. The assumption of 

independence will not be valid, in particular, for 

spatially dependent data. Here,   will be 

estimated robustly using the MCD estimator [9]. 

Local outlyingness could also be defined 

differently by measuring the distance to the next 

neighbor. Let 
jz be the next neighbor of iz , i.e. 

the distance of 
jz and iz is the smallest among all 

the neighbors of observation iz . The pairwise 

squared Mahalanobis distance  2
, 

i j
MD z z  is 

equal to a certain  j -quantile 

    2 2

; ip j
MD z


  of the chi-square distribution. 

Since, just by chance, the next neighbor could be 

close, it can be more sensible to search for  -

quantiles such that the corresponding ellipses 

include a pre-defined percentage, e.g. 10% of the 

next neighbors. Thus a characterization of local 

outliers requires a definition of the local 

neighborhood. For this purpose, two concepts are 

common, namely to fix a maximum distance maxd

in the space of the spatial coordinates, and to 

define the neighbors of an observation iz  as all 

points      1  , . . . ,  ; 
j

z j n j i  , where the distance 

,i jd  between iz and jz is not larger than maxd . 

As distance measure ,i jd , the Euclidean distance 

can be considered. A second concept is to define 

neighborhood by the nearest k  observations. For 

finding the k  nearest neighbors (kNN) of an 

observation iz , we have to consider the sorted 

distances 
,1 ,2 , ,

 . . . 
i i i k i n

d d d d    to all other 

observations. kNN to iz are all observations 

where 
, ,

 ,   1  , . . . ,  , ( )
i j i k

d d for j n j i   [11]. 

Let  2
, 

i j
MD z z  denote the sorted squared 

pairwise Mahalanobis distances of observation iz

to all neighbors 
jz  with

  1, . . . , i n i
j N i i  . 

The degree of isolation of an observation iz from 

a fraction of its neighbors can be characterized 

by the  i -quantile by equation (5) [9]: 

        2 2 2

; .(1 )
,

,        1, ,




 

i ip i n i
MD z MD z z

for i n

 


 

(5) 

where  i measures the local outlyingness of an 

observation iz . If, for example, the fraction   is 

fixed with 5%, then it means that for each 

observation, we are computing the degree of 

isolation from  1 95%   of its neighbors 

using equation 5. For a large number of neighbors, 

and in case of independence and normal 

distribution,  i should approximate  . 

However, if  i is substantially larger than  , 

observation iz is considered as a potential local 

outlier. This characterization of local outliers 

depends on the size of the neighborhood ( maxd or 

k ), and on the fraction   [9]. Thus the local 

outlier detection in this method can be 

summarized as follows. For each observation 

     1  , . . . , 
i

x i n : 

(i) Compute the pairwise Mahalanobis distances 

between ix  and its k  neighbors jx  using the 

global structure (Eq. 3) and MCD based on ilr-

transformed data. The reason for transforming the 

data is that the compositional data (here, 

geochemical data) is intrinsically in a simplex 

space rather than euclidean. Thus due to their 

compositional nature, problematic interpretations 

would be expected when they are used 

untransformed. After isometric logratio 

transformation, their distance transfers to 

Euclidean, and all the related statistical relations 

would be valid and significant. This problem has 

recently been considered in detail in the literature, 

and many solutions have been presented [34-36]. 

(ii) Determine the ellipsoid containing a 

proportion   of its k neighbors [9]. 

(iii) If the tolerance level of this ellipsoid is too 

large, according to the chisquare distribution, then 
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the observation is considered as a local outlier 

[30]. Two improvements on this method can be 

proposed: (1) Use a local structure estimated 

separately on each neighborhood instead of the 

general one. As size k of the neighborhood can 

be smaller than dimension p , the local structure 

has to be estimated by a robust and regularized 

estimator. (2) Instead of testing the local 

outlyingness of each observation, we suggest to 

focus only on the observations corresponding to a 

positively spatially auto-correlated neighborhood. 

The multivariate autocorrelation of a 

neighborhood is estimated by means of the 

determinant of the regularized MCD covariance 

estimator computed on the neighborhood, and 

only the neighborhoods yielding the smallest 

values are selected [30]. This is the parametric 

technique for the local multivariate outlier 

identification. However, there is also a non-

parametric detection technique for local outliers 

based on depth functions (not discuss here) [37]. 

 

 

 
Figure 1. All types of outliers in a 2D dataset; (left) variable scatterplot space; (right) coordinate space [9]. 

3. Geological setting of studied area 

The sampled area is situated within the eastern 

part of the so-called Lut block of eastern Iran. 

Eastern Iran, and particularly, the Lut block, has a 

great potential for different types of 

mineralization as a result of its past subduction 

zone tectonic setting, which lead to extensive 

magmatic activity forming igneous rocks of 

different geochemical compositions. The Lut 

block is characterized by extensive exposure 

tertiary volcanic and sub-volcanic rocks formed 

due to subduction prior to the collision of the 

Arabian and Asian plates [38-40]. Most of the 

studied area is covered by the upper  

Eocene-Oligocene altered volcanic rocks 

including andesite, dacite, tuff, and ignimbrite. 

These rocks are intruded by felsic to intermediate 

intrusive porphyritic rocks consisting of 

monzonite, diorite, and microgranodiorite 

porphyry stocks. Sedimentary rocks in this area 

consist of conglomerates, minor middle Eocene to 

upper Eocene tuffaceous marls in the southeastern 

to eastern area and Quaternary sediments [41]. 

The prospect area is similar to low-sulfidation 

epithermal systems. The rocks are dominantly 

altered andesite and dacite (Figure 2). 

Argillization, sericitization, and silicification are 

the common hydrothermal alterations in this area. 

Mineralization is not seen at surface [41]. 

The area comprises the moderately folded Tertiary 

volcanic zone of Kuh-e-Shah in the north, a zone 

of strongly tectonized and partly Eocene andesites 

and dacite-andesites. It is a zone of gently warped 

and tilted Upper Tertiary andesitic formations 

belonging to the Lut block. The tuff in the center 

of the area grades laterally and upwards into thick 

volcanic breccia, and locally, conglomerate with 

pebbles of alveolina and nummulitic limestone of 

Paleocene-early Eocene age. These clastic rocks 

are overlain by widespread dacites and dacite 

tuffs, which, due to the gradational contact 

relations with the underlying beds, are thought to 

be also of Paleocene age. The rocks tentatively 

attributed to Neogene are mainly various types of 

andesite. In the present area, the andesitic rock 
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units seem to be genetically related to a 

characteristic formation of microdiorites, which 

protrude through the Paleogene volcanics. The 

volcanic breccias underlying the dacites extend 

eastward, where they are again not only associated 

with dacitic rocks but also with abundant, strongly 

altered, andesitic material. The Neogene andesites 

have been divided into several petrographic 

varieties, which seem to belong to different 

extrusive centers, and also differ slightly in age. 

Most widespread are pyroxene andesites. Some 

ancient workings for copper are found in the south 

of this area, apparently related to the aplitic 

intrusions in the area. Traces of malachite and 

chalcopyrite occur in several small ancient 

workings south and southeast of Hamich in dacitic 

and andesitic volcanic rocks of the Paleogene. 

Minor lead-zinc mineralisations with galena, 

cerussite, and smithsonite are found in the dacite 

and pyroxene andesite units south of this area 

[42]. 

 
 

 
Figure 2. Lithological map of the study area and litho-geochemical sampling locations [42]. 

4. Data preparation, discussion and results 

The dataset used in this research work was taken 

from a part of an exploration project carried out in 

southwestern of Birjand, South Khorasan, by 

IMTO
1
. The data consists of 396 litho-

geochemical samples analyzed for 44 trace 

elements in Amdel lab in Australia. The study 

area covers a 40 km
2
 rectangle with Hamich, a 

village and the only populated area, at the west. 

Geographically, it is an arid region with an almost 

hill and creek topography. 

The sample locations are shown in Figure (2). Out 

of all the variables, Ag, B, Bi, Cd, Hg, Sn, and Te 

were removed because they had more than about 

                                                      
1
 Industry, Mine & Trade Organization (IMTO). 

60% of missing values. The 37 remained variables 

were used in the imputation process. 53 samples 

of Au had zero values, and 1 of As, 6 of Co, 185 

of Cr, 20 of Mo, 28 of Sb, 33 of Tl, and 15 of W 

were below the detection limit (BDL). These 

missing values were replaced using the recent 

technique of ilr-Em imputation in zCompositions 

package in R [43, 44]. Ilr-EM (that implements 

model-based ordinary and robust expectation-

maximization algorithms) and ilr-DA (that 

implements a simulation-based data augmentation 

algorithm) to impute left-censored values are the 

best introduced methods that deal with the 

multivariate compositional structure of the data 

using an array of their analytical BDL values. 
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Then a sub-composition of variables was selected 

based on their geological relations and 

paragenetical properties. It included Au, As, Cu, 

Mo, Fe, Mg, Pb, Zn, Ni, Co, Cr, and W. First, 

using mvoutlier package in R [45], the matrix of 

the selected variables was ilr-transformed and the 

global multivariate and univariate outliers were 

determined and plotted (Figures 3 and 4). The 

map shows only the outliers that are out of the 

0.975 quantile of the multivariate chi-square 

distributed MD based on the MCD estimator. 

Comparing Figures 3 and 4 gives us some clue 

that indices 1 to 13 and 74 in the southern part 

show anomalies of Cu, Fe, Pb, Zn, Au and indices 

29, 33, 35, 40, 43, 44 show anomalies of Ni, Co, 

Cr, Pb, Zn. Index 56 shows a strong anomalies of 

As and Ni. 

 

 
Figure 3. Global outliers map of the study area, indicating locations of outlying samples. 

 

 
Figure 4. Univariate ilr-transformed data showing outliers. 
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Then, to determine the local outliers, we needed to 

define parameters  ,k  . One way is to fix one 

item and change the other one to get the best value 

out of the sensitivity analysis. Thus using the first 

tool in mvoutlier package, we varied the number 

of neighbors of each observation using kNN with 

1, . . . , 395k  . Thus if 395k  , this means that 

all observations are neighbors of any observation 

except itself. The fraction   is arbitrarily fixed 

with 10% (though it is the best starting value). For 

each observation, the degree of isolation from 

 1 90%   of its neighbors was computed 

using equation 5. Figure 5 shows the results in 

two separate plots for the regular observations and 

for global outlying observations. Each line in the 

plots belongs to one specific observation [9]. 

Because, here, we needed to study the anomalies, 

the considerable area in the plots is outlying 

observations (the right plot). The regular 

observations or inliers are like those inside the 

ellipsoid (cut-off value for chisquare of robust 

MDs) of Figure 1. Looking at the plot, for very 

small values of k , we observe some instability. 

The reason is that, just by chance, two 

observations could be close in the spatial sense 

but very different in the variable space. For a 

larger neighborhood, the local outlier measure 

becomes more reliable [9]. Thus in this plot, some 

observations for a neighborhood size of 15k   

show better exceptional behaviors than the others. 

In the next step, fixing 15k  using another tool 

in the package, the fraction   was varied to 

compute the best degree of isolation. Figure 6 

shows the resulting plots for the inliers (left) and 

the outliers (right). The horizontal axes represent 

  and the vertical axes are degrees of isolation. It 

shows that isolatedness of observation from a 

varying percentage of the nearest 15 neighbors for 

some of them is significantly high. They are those 

that show the same isolatedness in Figure 5 for 

15k  . 

As it can be seen in Figures 5 and 6, the best 

isolatedness might be derived for 15k  and 

0.1  . Then, at the final step, using these 

parameters, various local outliers were determined 

and mapped just for a box of the last 10 indices 

that were chosen from global outliers, as it can be 

seen in the left plot of Figure 7. Its x-axis shows 

the sorted observations according to the computed 

degree of isolation from a fraction of  1   of 

their neighbors. This plot is also split into regular 

(left) and global (right) outliers. 

The right plot in Figure 7 shows the spatial map of 

the potential local outliers of those selected by the 

box in the left plot together with their neighbors. 

Comparing the map in Figure 7 with that in Figure 

3, it is evident that the local outliers may represent 

the geochemical anomaly halos around the global 

outlier samples 62, 66, 55, 56, 75, 76, 77 in the 

northern part, and 74, 6, 11, 18, 21, 22, 23, 25 in 

the southern part. If we wanted to study the halos 

around other global outliers or all of them, we 

could choose a wider box of indices. 

Locations of some of the proposed borehole 

targets of identified anomalies in the detailed 

exploration report and the indices of mineralized 

Pb, Zn, and Cu are shown in Table 1. Comparing 

this data with the position of the identified local 

multivariate outliers confirms the accuracy of 

anomalies identified in Figure (3). Therefore, it 

could be verified that the geochemical halos of the 

anomalies defined by this method would be 

suitable prospecting targets for the detailed 

explorations of the next stage. 

 
Figure 5. Degree of isolation of each observation (lines) from 90% of neighbors. Size of neighborhood is changed 

(horizontal axes). 
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Figure 6. Degree of isolation of each observation (lines) from a varying percentage   of next 15 neighbors. 

 

 
Figure 7. Local multivariate outliers of selected box of indices in the study area with 15,  0.1k   . 

 

Table 1. Locations of proposed boreholes for core drillings as well as Pb, Zn, and Cu indices. 

ID X Y 

BH1 680274 3586595 

BH3 680432 3586070 

BH5 680558 3586108 

BH9 679890 3586021 

Cu index 684604 3584072 

Pb-Zn index 681905 3583999 

Cu index 680125 3584029 

5. Conclusions 

The reasons for local outlyingness of the marked 

points could be numerous. Some reasons are 

different data structures caused by local 

alterations of the rocks, exchanged samples, errors 

due to incorrect sample preparation, wrong 

laboratory analyses, and contaminations with 

different sources. Thus a much more detailed 

study of the area is required to recognize which 

source is more responsible for the causes of 

outlyingness. The first question that may rise is 

that how we can be so sure about the results. The 

answer, just as for all the anomaly identification 

methods, is that the most reliable and also 

simplest verification would be through field 

checking. In this research work, we compared the 

obtained locations of local outliers to the core 

drilling targets proposed in the detailed 

exploratory report of the area. Three out of four of 

them were just in the place of these local outliers. 

The analysis methods of anomaly separation that 

were used in the report to identify targets were the 

convenient ones that were methodologically 

completely different. Although this recent method 

is more reliable due to opening the closed system 

of compositional data, which nowadays is proven 

that if used raw (like in convenient classical 

methods of analysis), will deviate the related 

interpretations. On the other hand, the halos of 
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local outliers also cover the mineral indices of Pb, 

Zn, and Cu marked in the geological 1:100,000 

sheet and located in the southern part of the 

studied area. The principle that has to be noted is 

that the statistical dealing with this problem is not 

expected to yield fully complying solutions with 

the reality on the field of exploration due to the 

plenty of factors governing the geochemical 

transactions. However, it enlightens the way to 

further detailed explorations and important 

guidelines in making decisions to determine 

drilling points. 
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 چکیده:

هاای متتلا    ای، روشهای ژئوشیمیایی ناحیهشناسایی آنومالی همیشه یک موضوع بسیار مهم در اکتشافات ژئوشیمیایی مقدماتی بوده است. در طی پردازش داده

هاا تحات   های ژئوشایمیایی کاه داده  ررسیباشند. مقادیر خارج از ردی  در بی معدنی وجود دارند که قادر به ارائه یک نتیجه به عنوان خروجی میکاو دادهآماری و 

باشاند بناابراین شناساایی    ساازی مای  باشند. این مقادیر در ژئوشیمی اکتشافی بیانگر رخدادهای کانیگردند بسیار مورد توجه میمی یآور جمعشرایط کنترل شده 

توابع عمق( برای شناساایی مقاادیر خاارج از ردیا       اساس برر پارامتری )فواصل ماهالانوبیوس( و غی اساس بر) robustی پارامتری ها روشبسیار مهم است.  ها آن

اند. در این تحقیق روش شناسایی مقادیر خارج از ردی  چند متغیاره محلای باه من اور مشاتد نماودن       های ژئوشیمیایی، توسعه یافتهچند متغیره در میان داده

رقی بیرجند، خراسان جنوبی، شرق ایران واقع شده است، بکار گرفته شاد. بارای ایان من اور تعاداد      های آنومالی ژئوشیمیایی در منطقه همیچ که در جنوب شهاله

هاای  ی و اندیسشناس نیزمکه انطباق خوبی بین  دهدآمده نشان می دست بهعنصر آنالیز گردیده بود، استفاده شد. نتایج  44نمونه لیتو ژئوشیمیایی که برای  932

هاای حفااری در   ها به من اور بهیناه کاردن محال    تواند توسط مجریان پروژهدر بتش جنوبی منطقه وجود دارد. چنین مطالعاتی میسازی سرب، روی و مس کانی

 مراحل اکتشاف تفضیلی مورد استفاده قرار گیرد.

 .خارج از ردی  چند متغیره محلی، آنومالی، خراسان جنوبی، همیچ ریمقادداده ژئوشیمی،  کلمات کلیدی:

 

 


