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Abstract 

The tensile strength (TS) of rocks is an important parameter in the design of a variety of engineering structures 

such as the surface and underground mines, dam foundations, types of tunnels and excavations, and oil wells. 

In addition, the physical properties of a rock are intrinsic characteristics, which influence its mechanical 

behavior at a fundamental level. In this paper, a new approach combining the support vector regression (SVR) 

with a cultural algorithm (CA) is presented in order to predict TS of rocks from their physical properties. CA is 

used to determine the optimal value of the SVR controlling the parameters. A dataset including 29 data points 

was used in this study, in which 20 data points (70%) were considered for constructing the model and the 

remaining ones (9 data points) were used to evaluate the degree of accuracy and robustness. The results 

obtained show that the SVR optimized by the CA model can be successfully used to predict TS. 

 

Keywords: Tensile Strength (TS) of Rocks, Support Vector Regression (SVR), Cultural Algorithm (CA), 

Physical Properties. 

1. Introduction 

The tensile strength (TS) of rocks is often a 

significant mechanical parameter in the 

engineering practice in/on rocks [1]. It governs the 

failure of rock masses in problems such as the 

stability of mining roofs, galleries, and drilling 

and blasting [2]. There are basically two 

approaches used for determining TS of rocks, one 

of which is to collect and test rock specimens in 

the laboratory (direct methods), and the other one 

is to use the empirical relationships developed 

between the TS and the index parameters of rocks 

(indirect methods) [3]. The direct standard 

methods are difficult, time-consuming, and 

expensive, especially with highly porous, highly 

fractured, weak, and inhomogeneous rocks [4]. 

Hence, different relationships have been presented 

between the TS and the various 

physical/mechanical properties of rocks [5]. The 

estimator variables used for predicting TS are the 

mineralogical composition and the intrinsic rock 

properties such as the grain size, aspect ratio, form 

factor [6], electrical resistivity [7], strength ratio, 

unconfined compressive strength, tensile crack 

initiation stress [8], total porosity [9], point load 

strength [5, 9], and Schmidt hammer value [9]. 

Many researchers have developed various 

predictive models that employ the empirical 

approach [8], conventional statistical models [5, 7, 

10], soft computing techniques based on genetic 

programming [3, 9, 11], and artificial neural 

networks (ANNs) [6, 12-16]. In spite of their 

advantages, some soft-computing-based models 

like ANNs may suffer from drawbacks including 

getting trapped in local minima, over-training, 

subjective determination of model parameters, 

random initialization of the weights in each 

simulation, and complex structures (i.e. hidden 

layers, number of neurons in the hidden layers, 

activation function type, etc.) [3, 17-20]. 

In the past decade, a new kernel-based technique 

called a support vector regression (SVR) has been 

found popular in modeling studies due to its 
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advantages over ANN. This method is a powerful 

alternative that overcomes some of the basic 

weaknesses related to ANN, while retaining all 

the strengths of ANN [19-23]. SVR is a potent 

data mining model, which was developed by 

Vapnik and co-workers [24] based on the 

statistical learning theory for solving problems 

encountered in petroleum industry. Although this 

method is powerful for modeling different 

phenomena, it suffers from some shortcomings, 

which limit its application. In every SVR 

modeling, there is a series of parameters whose 

values are required to be set precisely by the user. 

An incorrect input of the aforementioned 

parameters can lead to erroneous and even 

deceptive results. Hence, it is crucial to employ a 

potent optimization algorithm for searching the 

proper values for these parameters [25, 26]. In the 

present study, a fast, robust, and easy-to-use 

method called cultural algorithm (CA) was 

applied as the strategy of searching the optimal 

value of the SVR controlling parameters. The 

integration of the SVR model and CA method 

produced a model, which can predict the TS of 

rocks with good precision. 

2. A brief review of methods used 

2.1. Support vector regression 

The method of support vector machines (SVMs), 

introduced as a machine learning technique by 

Vapnik [24], has received so much attention due 

to its promising capabilities in minimizing the 

prediction error since its development [27-29]. 

The underlying concept of SVR is to map the 

original data into a higher-dimensional feature 

space and to fit a linear function with a least 

reasonable complexity to the feature space [30, 

31]. The latter stage is carried out to make the 

function as flat as possible in order to reduce the 

complexity, and it means a better generalization to 

a considerable extent. 

Let the training samples be denoted as 

     1 1{ , | , ,..., , }n nXY x y x y x y , where n is 

the number of training samples. In SVR, the 

ultimate goal is to find a linear relation between 

the n-dimensional input vectors 
nx R  and the 

output variables y R , as follows: 

( )  Tf x w x b  (1) 

where b and w are the offset of the regression line 

and the slope, respectively. For determining the 

values for b and w, it is necessary to minimize the 

following equation: 
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The first term in Eq. (2), employing the concept of 

maximizing the distance between two separated 

training data, is used to regularize weight sizes, to 

penalize large weights, and to maintain the 

regression function flatness. The second term 

penalizes training errors of f(x) and y using the  

ε-insensitive loss function. The loss function, 

utilized in SVR is ε-insensitive, has been 

proposed by Vapnik (1995) [24] as follows: 
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This problem can be reformulated in a dual space 

by: 
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where 
*, 0i i   are positive Lagrange 

multipliers, and C is the regulated positive 

parameter that determines the trade-off between 

the approximation error and the weight vector 

norm w . After calculation of the Lagrange 

multipliers i and 
*

i , the training data points that 

meet the condition 
* 0i i    will be used to 

construct the decision function. Hence, the best 

linear hyper surface regression is given by: 

 *

0

1

( )


    
l

T T

i i i

i

f x w x b x x b   (6) 

in which the desired weight vector of the 

regression hyper plane is given by: 

 *

0

1

 
l

i i i

i

w x   (7) 

In a non-linear regression, the kernel function is 

applied for mapping the input data onto a higher 

dimensional feature space in order to generate a 

linear regression hyper plane. In the case of the 

non-linear regression, the learning problem is 

again formulated in the same way as in a linear 
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case, i.e. the non-linear hyperplane regression 

function becomes: 

 *

1

( ) ( , )


  
l

i i i

i

f x K x x b   (8) 

where ( , )iK x x  is the kernel function, defined as 

follows: 

( , ) ( ) ( ) , 1,...,T

i j i jK x x x x i j l   , (9) 

where ( )ix and ( )jx are the projections of xi 

and xj in the feature space, respectively. 

One may choose any arbitrary kernel function 

such as the linear kernel function, 

   , , ,i j i jK x x x x  radial basis function (RBF),
 

  2, exp( 2 ), 0i j i jK x x x x      , and 

polynomial kernel function, 

   , ( , 1) , 0d

i j i jK x x x x d   . In highly  

non-linear spaces, the RBF kernel usually yields 

more promising results in comparison with the 

other mentioned kernels [32]. Thus we only used 

the RBF kernel function in this study. 

2.2. Cultural algorithm 

CA [33, 34] involves acquiring the belief space 

from the evolving population space and then 

exploiting that information to guide the search. 

Figure 1 presents the CA components. CA can be 

described in terms of the two basic components 

belief space and population space. The belief 

space is the information repository, in which the 

individuals can store their experiences for other 

individuals in order to learn from them indirectly. 

In CA, the information acquired by an individual 

can be shared with the entire population, unlike 

most evolutionary techniques, in which the 

information can be shared only with the offspring 

of the individual. The population space comprises 

a set of possible solutions to the problem, and can 

be modeled using any population-based approach. 

The belief space and the population space are 

linked using a scheme that states the rules 

governing the individuals of the population space 

that can contribute to the belief space based on its 

experiences (according to the acceptance 

function), and the belief space can influence the 

new individuals of the population space 

(according to the influence function). 

 

 
Figure 1. Framework of CA [35]. 

3. SVR parameter optimization using CA 

The generalization ability of SVR is extremely 

dependent upon its learning parameters, i.e. the 

RBF kernel parameter 5 52 ,2    , the error 

margin  0.01,0.6  , and the regularization 

parameter 5 152 ,2C   
, to be set correctly. 

Finding the best combination of the  

hyper-parameters is often troublesome due to the 

highly non-linear space of the model performance 

with respect to these parameters. Although an 

exhaustive search method could be utilized to tune 

these hyper-parameters, it suffers from the main 

drawbacks of being very time-consuming and 

lacking a guarantee of convergence to the globally 

optimal solution. The real-value genetic algorithm 

(GA) was employed to determine the optimal 

parameters of SVR, which were then applied to 

construct the SVR model, referred to as SVR-GA 

[36-38]. ACO has also been used by several 

researchers to select the model parameters of SVR 

[39-41]. Recently, the harmony search (HS) has 

also been utilized to choose the SVR model 

parameters [42]. 

In this paper, we adopted CA for choosing the 

optimal values for the SVR parameters in order to 

improve the runtime and efficiency of the learning 

procedure. 

4. Data source and data structure 

To establish a SVR-CA model in order to predict 

TS, providing an appropriate dataset is the most 

important requirement. To achieve this, the 

datasets given in the previous work were 

borrowed [13]. A database composed of the 

measured TS values and physical properties were 

established using the data collected from a 

formation around Khouzestan Province, Iran. The 

specimens of fresh sandstone blocks were cored in 

the laboratory. Each dataset contained the 

parameters porosity (%), specific gravity (Gs), dry 
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unit weight (kN/m
3
), saturated unit weight 

(kN/m
3
), and measured TS (MPa). The TS values 

for the rock samples were determined using the 

Brazilian tensile strength tests. The Brazilian test 

is widely used as a satisfactory technique for 

determining the TS values for many rocks [43-

45]. The test measures TS indirectly by 

developing tension across the diameter of a rock 

disc that is subjected to compression through a 

vertical load [5]. The testing procedures for this 

method have been standardized by the 

International Society for Rock Mechanics (ISRM) 

[46]. In the resource [13], the Brazilaian tests 

were performed according to the ISRM suggested 

method. A detailed description of the database can 

be found in the refered resource [13]. 

The data was randomly divided into two subsets: 

70% of the total data (20 cases) was allotted to the 

training data for the SVR-CA model construction, 

and 20% of the total data (9 cases) was allocated 

to the test data used to assess the reliability of the 

developed model. The partial dataset used in this 

study is presented in Table 1. Table 2 shows the 

statistical description of the datasets used in this 

study. 

 
Table 1. Partial dataset used for constructing SVR-CA model [13]. 

Input parameters  Output parameter 

Porosity 

(%) 

Specific gravity 

(Gs) 

Dry unit weight 

(KN/m
3
) 

Saturated unit weight 

(KN/m
3
) 

 Tensile strength 

(MPa) 

18.35 26.68 21.78 23.54  3.85 

5.74 24.33 22.86 23.45  8.64 

12.51 24.62 21.58 22.76  4.31 

5.05 24.92 23.64 24.13  10.18 

14.05 24.13 20.7 22.17  2.45 

 
Table 2. Statistical description of dataset utilized for construction of SVR-CA model. 

Parameter Min. Max. Average 

Porosity (%) 4.19 25.27 11.50 

Specific gravity (Gs) 22.76 26.68 24.71 

Dry unit weight (KN/m
3
) 16.97 24.62 21.90 

Saturated unit weight (KN/m
3
) 19.42 25.11 23.04 

Tensile strength (MPa) 0.19 13.23 5.90 

 

5. Prediction of tensile strength of rocks from 

physical properties 

5.1. Pre-processing of data and evaluation 

criteria 

In the data-driven system modeling methods, 

some pre-processing steps are usually 

implemented prior to any calculations in order to 

eliminate any outliers, missing values or bad data. 

This step ensures that the raw data retrieved from 

database is perfectly suitable for modeling. In 

order to soften the training procedure and improve 

the accuracy of estimation, all data samples are 

normalized to adapt to the interval [-1, 1] 

according to the following linear mapping 

function [47]: 

min

max min

2 1M

x x
x

x x

 
  

 
 (10) 

where x is the original value for the dataset, xM is 

the mapped value, and xmax (xmin) denotes the 

maximum (minimum) raw input values, 

respectively. 

Furthermore, to verify the performance of the 

model, the five statistical criteria mean squared 

error (MSE), variance account for (VAF), root 

mean squared error (RMSE), squared correlation 

coefficient (R
2
), and mean absolute percentage 

error (MAPE) were chosen to be the measures of 

accuracy [48-51]. Let tk be the actual value, ˆ
kt be 

the predicted value for the k
th
 observation, and n 

be the number of observations. Then RMSE, 

MSE, VAF, R
2
, and MAPE could be defined, 

respectively, as follow: 
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1

ˆ1
100

n
k k

k k

t t
MAPE

n t


  , (15) 

where ˆ( )t t
  denotes the mean value for 

ˆ( ), 1,...,k k
k n   . 

5.2. Results 

In this paper, a hybrid SVR-CA model was 

proposed to predict TS. The parameters porosity 

(%), specific gravity (Gs), dry unit weight 

(kN/m
3
), and saturated unit weight (kN/m

3
) were 

considered as the input parameters of the  

SVR-CA model, and TS was the output. 

Furthermore, the generalization ability of SVR is 

highly dependent upon its learning parameters, i.e. 

 , ,C   . Therefore, CA was used to find the 

optimal values for these parameters. A 10-fold 

cross-validation performance measure was applied 

to the training dataset along with SVR-CA to 

achieve reliable results. CA with a population size 

of 20, acceptance ratio = 0.35, number of accepted 

individuals = 7, alpha = 0.25, and beta = 0.5 was 

executed for 100 iterations to find the optimal 

values for the SVR parameters. The adjusted 

values for the parameters  , ,C   with maximal 

accuracy were selected as the most appropriate 

ones. Then the optimized parameters were used to 

train the SVR model. The SVR parameters 

optimized by CA are presented in Table 3. 

A comparison between the values for TS 

predicted by the SVR-CA model, and the 

measured values for 29 datasets at the training and 

testing phases are shown in Figures 2 and 3. As it 

can be seen, the results of the SVR-CA modeling 

compared with the actual data show a good 

precision. The performance analysis of the  

SVR-CA model for predicting TS is shown in 

Table 4. The performance indices tabulated in this 

table indicate a high performance of the SVR-CA 

model that can be successfully used in the 

prediction of TS. 

Table 5 compares our results with the results 

obtained by Ghobadi et al. [13]. This table 

contains the results obtained for the three methods 

linear regression model (MLR), ANN, and SVR 

optimized by the CA model. As it can be seen, the 

SVR-CA model indicates a better performance 

compared to the previously published models, 

taking all the criteria into account . 

The flexibility of the kernel functions in modeling 

linear and non-linear relationships allows SVR to 

search for a wider range of solution space 

compared to MLR and ANNs [52]. Moreover, 

ANNs is a black-box approach suffering from a 

computationally expensive training process [53].

 
Table 3. Values for SVR parameters optimized by CA. 

Optimal value for σ Optimal value for C Optimal value for ε 

2.2467 862.2191 0.3995 

 

 
Figure 2. Comparison between measured and predicted TS values for training data points. 
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Figure 3. Comparison between measured and predicted TS values for testing data points. 

 

Table 4. Performance of model for predicting TS. 

Description R
2
 MSE RMSE VAF MAPE 

Training datasets 0.8180 0.032 0.1787 76.41 28.04 

Testing datasets 0.9826 0.020 0.1415 93.10 17.57 

 
Table 5. Comparison of performance of proposed model and previously presented models. 

Description  R
2 

MSE RMSE VAF MAPE 

SVR-CA 

(Proposed in this study) 

Training datasets 0.81 0.032 0.1787 76.41 28.04 

Testing datasets 0.98 0.020 0.1415 93.10 17.57 

ANN 

(Proposed in Ghobadi et al. [13]) 

Training datasets ... ... ... ... ... 

Testing datasets 0.99 ... ... ... ... 

MLR 

(Proposed in Ghobadi et al. [13]) 

Training datasets ... ... ... ... ... 

Testing datasets 0.94 ... ... ... ... 

 

6. Conclusions 

Since the direct methods used for measuring the 

tensile strength (TS) of rock materials are 

associated with difficulties and even uncertainties 

in some cases, the indirect determination of this 

parameter is a topic of interest in rock mechanics. 

In this paper, the idea of relating TS of rocks to 

their index characteristics was followed. Due to 

the highly complicated nature of rocks, a  

soft-computing approach was used in this work. 

Soft computing is an extension of natural 

heuristics, and is capable of dealing with complex 

systems since it does not require strict 

mathematical definitions and distinctions for the 

system components. Soft computing, in spite of 

hard computing, is tolerant of imprecision, 

uncertainty, and partial truth. Several soft 

computing techniques have been presented, each 

of which can be used separately. However, if they 

are used together, they can produce solutions to 

problems that are too complex or inherently noisy 

to tackle with the conventional mathematical 

methods. 

In this paper, a new approach combining SVR 

with CA was presented to predict TS of rocks 

from their physical index properties. The inputs of 

the model were porosity, specific gravity, dry unit 

weight, and saturated unit weight. In the proposed 

methodology, CA was used as a tool for 

determining the optimal value for the SVR 

controlling parameters. Some statistical measures 

of performance (i.e. RMSE, MSE, VAF, R
2
, and 

MAPE) were employed to assess the model. The 

results obtained indicate that SVR optimized by 

CA successfully predicts TS, and shows a better 

performance than MLR and ANN do. In terms of 

accuracy, the SVR-CA model resulted in lower 

RMSE and MSE values, and higher VAF and R
2
 

values. Application of the hybrid SVR-CA model 

in other areas of rock mechanics and rock 

engineering is suggested as a topic of future 

studies. 
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‌چکیده:

هطا و فاطاهای    سطدها، انطواع تونط      های مهندسی از جمله معادن سطححی و زیرزمینطی، پطی    ها یکی از پارامترهای مهم در طراحی انواع سازه مقاومت کششی سنگ

از طرفی، خصوصیات فیزیکی یک سنگ بر رفتار مکانیکی آن تأثیرگذار اسطت. در ایطت تحقیطا بطا اسطتفاده از یطک روش        است.های نفتی  ی چاه زیرزمینی و دیواره

بینطی شطده    شطان پطی    ها از روی خواص فیزیکی مقاومت کششی سنگ «یفرهنگ تمیالگور توسط شده نهیبه بانیپشت بردار ونیرگرس» روشترکیبی جدید به نام 

داده  63های استفاده شطده در ایطت تحقیطا شطام       استفاده شده است. داده بانیپشت بردار ونیرگرسالگوریتم فرهنگی برای تنظیم پارامترهای  ،است. در ایت روش

کطه   دهطد  آمده در ایت تحقیا نشان مطی  دست بهسازی و مابقی جهت بررسی دقت و عملکرد مدل بکار گرفته شده است. نتایج  ها جهت مدل درصد آن 01که  است

 شان را دارد. ها با استفاده از مشخصات فیزیکی کششی سنگ مقاومت ینیب  یپروش مذکور توانایی بالایی در 

 . ، مشخصات فیزیکییفرهنگ تمیالگور، بانیپشت بردار ونیرگرسها،  مقاومت کششی سنگ کلمات‌کلیدی:

 

 

 

 


