JME

Journal of Mining & Environment,
Vol.8, No.2, 2017, 255-267.
DOI: 10.22044/jme.2017.849

Robust production scheduling in open-pit mining under uncertainty: a box
counterpart approach

A. Alipour”, A.A. Khodaiari*, A. Jafari* and R. Tavakkoli-Moghaddam?*

1. School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran
2. School of Industrial Engineering, College of Engineering, University of Tehran, Tehran, Iran
3. LCFC, Arts et Métier ParisTech, Centre de Metz, France

Received 4 July 2016; received in revised form 6 January 2017; accepted 18 January 2017
*Corresponding author: aref.alipour@gmail.com (A. Alipour).

Abstract

Open-Pit Production Scheduling (OPPS) problem focuses on determining a block sequencing and scheduling
to maximize Net Present Value (NPV) of the venture under constraints. The scheduling model is critically
sensitive to the economic value volatility of block, block weight, and operational capacity. In order to deal
with the OPPS uncertainties, various approaches can be recommended. Robust optimization is one of the
most applicable methods in this area used in this study. Robust optimization based on the box counterpart
formulation is applied to deal with the OPPS problem. To have a comparison between the solutions of the
box counterpart optimization model and the deterministic model, a Two-Dimensional (2D) numerical study
of a hypothetical open-pit mine is conducted followed by additional computations on the actual large-scale
instances (Marvin orebody). This investigation shows that the different features of the robust planning under
uncertainty can be scheduled. Also the price of robustness is obtained in different levels of conservatism.

Keywords: Open-Pit Mine Production Scheduling, Robust Counterpart Optimization, Uncertainty, Block

Economic Value.

1. Introduction

Open-pit mines are typically represented by
discretization of the orebody consisting of
equal-sized units known as blocks. Geological
attributes such as weight, grade, rock description,
and location are assigned to individual blocks
[1-3]. OPPS concentrates on determining a block
extraction sequence in a way that maximizes NPV
of the venture under access, mining capacity,
processing capacity constraints, and some other
criteria such as blending constraints (extracted ore
grade) [4].

The optimization of OPPS has a long history, and
numerous studies have addressed different
features of the deterministic OPPS problem. In
1967, the graph theory and network flow-based
approaches were applied [5]. Tolwinski and
Underwood [6] have developed a dynamic
programing combined with a heuristic method.
Caccetta and Hill [7] have presented a

Mixed-Integer Programming (MIP) model and
introduced a branch-and-cut algorithm to solve the
problem. Lambert and Newman [8] have
employed tailored Lagrangian relaxation in the
OPPS formulation. Detailed information on the
OPPS formulation can be found in a tutorial of
fundamental OPPS mathematical formulation
models by Lambertet al. [9]. Shishvan and
Sattarvand [10] have applied an ant colony
optimization to untangle an extended OPPS
problem for a real-world mine. Liu and Kozan
[11] have developed two different graph-based
algorithms to tackle with large-scale benchmark
OPPS instances from Mine Lib. To find more
related research works in the area of OPPS
problem, the readers are referred to an article by
Kozan and Liu [12].

Production scheduling problem solutions are
critically sensitive to price volatility, ore grade
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uncertainty, operational capacity, etc. Hence, the
scheduling process involves a significant degree
of uncertainty. In order to deal with uncertainties,
various approaches can be recommended, some of
which include the chance-constrained
programming, stochastic  programing  with
recourse and robust stochastic optimization, fuzzy
programing, and robust optimization programing.
Due to the inherent limitations and compatibility
of chance-constrained and fuzzy programing
methods, their application is limited in mine
production  scheduling  problems. In the
scenario-based optimization methods such as
stochastic programing with resource framework,
considering  conditional simulation  onerous
procedure and large number of blocks, a
large-scale optimization problem is resulted. (The
readers are referred to references [13-15].) To see
more related research works in the area of
uncertain OPPS problem, the readers are referred
to the references [16-20].

The robust optimization method is an applicable
option in dealing with mine production scheduling
problem uncertainties. Data uncertainties may
lead to quality, optimality, and feasibility
problems when deterministic models are used.
Hence, it is required to generate a solution
immune to data uncertainty. In other words, the
solution should be robust [21]. The robust
optimization theory provides a framework to
handle the uncertainty of parameters in the
optimization problems that could immunize the
optimal solution for any realization of the
uncertainty in a given bounded uncertainty set
[22-24].

The variation in response is derived from
uncertainties in the design variables and/or design
parameters [21, 25]. The purpose of global robust
optimization is to find a design with the target
response and the smallest variation. Different
types of robust framework have been developed.
Soyster [26] have considered simple perturbations
in the data aiming to find a framework of robust
counterpart optimization such that the resulting
solutions are feasible wunder all possible
perturbations.

The robust counterpart optimization techniques
are broadly used in engineering optimization
problems.  Set-induced robust  counterpart
optimization techniques include interval set,
combined interval and ellipsoidal, adjustable box,
pure ellipsoidal, pure polyhedral, combined
interval, ellipsoidal, and polyhedral set [21]. Lin
et al. [27] have introduced mixed integer linear
optimization ~ (MILP)  robust  optimization
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formulation. Verderame and Floudas have applied
both the continuous and discrete uncertainty
distributions to extend the robust optimization
framework [28]. The degree of solution
conservatism has been considered in Bertsimas
and Sim [23]. A combined interval and polyhedral
uncertainty set with coefficient uncertainty has
been presented for robust linear programming.
Afterward, Bertsimas and co-workers [29] have
applied a robust optimization framework in the
fields of discrete programming. Averbakh [22]
has suggested a general approach to find min-max
regret solutions for a class of combinatorial
problems with interval uncertain objective
function coefficients based on reducing the
problem with uncertainty to a set of deterministic

problems. Equivalency of set-based robust
optimization  formulations and  conditional
value-at-risk (CVaR) bound-based

approximations to individual chance constraints
has been demonstrated in Chen et al.’s work [30].
Mulvey et al. [31] and Yu and Li [32] have
developed a stochastic model called RSO to
capture the randomness of the uncertain
parameters. The aim of RSO is not only to
maximize/minimize the objective function but
also to obtain a robust solution. In other words,
RSO attempts to generate a solution that is
insensitive to different realizations of input data.
Ghaoui et al. [33] have used the worst-case
probability distributions to extend worst-case
value-at-risk (VaR) bounds for a robust linear
optimization.

Price, costs, and discount rate used in OPPS
problem depend upon a series of unknown future
events, and are modelled by stochastic processes.
There have been more investigations conducted
regarding ore grade (geological) and price
uncertainty in open-pit mine stochastic production
scheduling problems [4, 19, 34, 35].

The application of the three different types of
robust optimization in OPPS problem has been
reported in different research works. Kumral [19]
has presented a stochastic robust optimization
model to deal with uncertainty in block grades,
price, mining, and processing costs. Espinoza et
al. [36] have implemented an uncertainty-based
robust optimization method to consider the
volatility of metal. Lagos et al. [37] have
compared Value-at-Risk, Conditional Value-at-
Risk, and a proposed Modulated Convex-Hull
robust optimization model for optimization under
ore-grade uncertainty of each block. In this work,
robust counterpart optimization formulation based
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on the box counterpart was applied to handle the
OPPS problem.

2. Robust counterpart optimization

Robust optimization is an approach used for
modeling optimization problems under
uncertainty, where the modeler aims to find
optimal decisions for the worst-case realization of
the uncertainties within a given set. Typically, the
original uncertain optimization problem is
converted into an equivalent deterministic form
(called the robust counterpart) using strong duality
arguments and is solved using standard
optimization algorithms [21].

In set induced robust optimization, the uncertain
data is assumed to vary in a given uncertainty set,
and the aim is to choose the best solution among
those “immunized” against data uncertainty, i.e.
candidate solutions that remain feasible for all
realizations of the data from the uncertainty set. In
general, consider the following linear optimization
problem with uncertainty in the left hand side
(LHS) constraint coefficients, right hand side
(RHS), and objective function coefficients:

max » €,X
i
33 )

>ax; <b,,vi
j

where Xj can be either a continuous or an integer

variable. Note that the objective and RHS
uncertainty can be transformed into LHS
uncertainty as follows:
max z
st.
z-Y¢x; <0

- 177 (2)

biX,+ Y 8;x; <0,Vi
j

XOl

Thus without loss of generality, we focused on the
following general ith constraint of a (mixed
integer) linear optimization problem considering
only the LHS uncertainty:

> ax,; <b,
j

and & is subject to uncertainty. Define the
uncertainty as follows:

éij =gy +§ijéij V] eJ;,

©)

(4)
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where @a; represents the nominal value of the

parameters, 4,

; represents positive constant

perturbations, ¢

i represents independent random

variables that are subject to uncertainty, and J,

represents the index subset that contains the
variables whose coefficients are subject to
uncertainty. Constraint (3) can be re-written by
grouping the deterministic part and the uncertain
part for the LHS of (3) as follows:

Zaijxj + 2. &dx; <b,
J

i€l

)
In the set induced robust optimization method, the
aim is to find solutions that remain feasible for
any (fij in the given uncertainty set U so as to
immunize against infeasibility, i.e.

Zaijxj +Mmax ., {Z gﬁjéijxj}sbi

J jed;

(6)

2.1. Uncertainty Sets

The formulation of the robust counterpart
optimization model is related to the selection of
the uncertainty set U . In this section, three
general types of uncertainty sets are introduced.
For the sake of simplicity, we eliminated the
constraint index | in the random vector & .

"Box "US
U, ={&llel. = wi={ele | <v.vi 9, "
"Polyhedral "US
ulz{gglsr}z{g ;gjsr} 8)
"Box + Polyhedral UJS |

(9)

Uloo:{ég Z‘fj‘sr,

where Wand I" are the adjustable parameters
controlling the size of the uncertainty sets.
Different advanced frameworks of uncertainty
sets are introduced in references [21, 38].

§jS\P,VjeJi}

2.2. Box counterpart optimization formulation
For constraint (5), its robust counterpart
optimization formulation (6) was derived for
different uncertainty sets introduced above as
follows; if the set U is the box uncertainty set (7),
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the corresponding robust counterpart constraint
(6) will be equivalent to the following constraints:

Zaijxj +¥ ) 4u,
]

ied

<b,
(10)

—U; SXJ- SUJ-

The box uncertainty set can be described using the
w—nom Of the uncertain data vector, as follows:

u, :{5‘"5”@ S‘P} ={§H§j ‘ <W,Vj el } ., where

Y is the adjustable parameter controlling the size
of the uncertainty set. Figure 1 illustrates the box

uncertainty set for parameter & defined by

]
ad=a;+&;5,] =12, where & denotes the true

value of the parameter,a; denotes the nominal

value of the parameter, ¢, denotes the

uncertainty, and é.j represents a constant

perturbation. If the uncertain parameters are
known to be bounded in given intervals
& e|a; —4;.a; +4; |vj J;, the uncertainty

can be represented byd; =a; +S&4, and this

results in the interval uncertainty set, which is a
special case of box uncertainty set when

¥ =i .e.,UwZ{fufj‘Sl,Vj eJi}) [24]. For the

first time, Soyster [26] used the “interval
uncertainty set” to denote the box set with = 1.
To attain robust solutions, we looked for solutions
feasible for any realization of the uncertain data in
a predefined uncertainty set. More details about
linear robust optimization accompanied with a
simple numerical example are presented in the
appendix (see reference [21]).

r

»

e

a,

Figure 1. lllustration of box uncertainty set [21].

3. Computational study for mine robust
production scheduling

3.1. Implementation and evaluation with a
simple example

Mine  production scheduling focuses on
determining a block mining in order to maximize
NPV under sequencing and capacity constraints.
The OPPS problem in deterministic form can be
presented using the following formulations [19]:

maxii\/ijxij,(l)

i1 j-1

st.

T T
D X, =Y %, j blocks overlying block k ,(2)
i=1

i=1

C’sZ(dj +Vv;)x; <C,Vi =1...,T :Constraint of mining capacity (3)

N

[N

A'<

=

Il
JiN
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Let x; be the decision variable and T be the
number of mining periods. N denotes the number
of blocks, v is the present value of block J in

period i, d, is the ore mass in block j , AA’
show the processing capacity (maximum and
minimum capacity, respectively), V i is the waste
mass in block j , and C,C' are mining capacity.
Our goal was to find:

(11)

d;x; <A,Vi =1,..T :Constraint of processing capacity (4)
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The sequencing constraint (11.2) means that in
order to (?) extract a block, the overlying blocks
should be mined either earlier or in the same
period.

The mining capacity constraint (11.3) is chosen
according to the economic and operational
considerations.

Processing capacity constraint (11.4): In the
open-pit mining, both ore and waste blocks are
mined due to the sequencing constraint. While
waste blocks are sent to the waste dumps, ore
blocks are transferred to the mineral processing
plant. The amount of ore blocks should be in
commensurate with the processing capacity.

Block conservation constraint (11.5): This
constraint guarantees that a block can be mined
just for one time.

Deterministic OPPS approaches do not consider
data uncertainties. The implementations based on
deterministic solutions may lead to significant

N N
c'<drx; +\P(Zr‘]x” +CIJ'Vi =1...T .d; +v, =r, :Constraint of mining capacity

]

Table 1. Parameters used for calculating economic
values of blocks.

Item Description

Recovery 0.88

Selling price ($/t) 5500

Selling cost ($/t) 1000
Processing cost ($/t) 4
Mining cost ($/t) 1
Discount rate (%) 4
Dimension of blocks in X(m) 10
Dimension of blocks in Y(m) 10

Each block must have associated economic values
related to its possible destination. Each field
related to the economic value (economic value
Process/Waste) has to represent the value of
blocks as a function of its destination, grades,
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NPV losses/rewards and/or capacity utilization
problems. Now we introduce the complete box
uncertainty set that induces robust counterpart
formulation for OPPS with constraints. It can be
expressed as follows:

where V;; denotes the nominal values of the

parameters,¥ denotes the uncertainty, and
V. f, v, C.C.AAd  represent  constant
perturbation of the objective function and
constraint coefficients.

A hypothetical copper deposit with relevant data
for developing economic block model was used to
explain the details of the robust OPPS method
implementation. Besides, the open-pit mine was
typically represented by 2D blocks in this
investigation. The effective parameters for
calculating the economic values of blocks are
presented in Table 1.

+(fJSC,Vi =1..T ,dj V=T :Constraint of mining capacity

(12)

N r o - - - -
_1djxij +AJSA,V| =1,..,T :Constraint of processing capacity

recovery, cost of mining, transport, treatment,
selling price, etc. The economic parameters of
blocks for block value calculations are presented
in Table 2. In this table, the maximum value of
economic process and economic waste of each
block is considered as the block value. The
economic value of a block is equal to its selling
price minus the extraction costs. For example, for
a copper mine, the economic value of a block is
calculated as follows in Equations (13) to (15).
For further explanation, the block economic value
calculation method is presented in Table 2.

A hypothetical copper deposit with geological
block model containing 200 blocks was assumed
and subjected to scheduling to explain the details
of the proposed algorithm implementation (Figure
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2). Table 1 illustrates the technical and economic
parameters used for the economic block model.
Figure 3 demonstrates the economic block model
of the hypothetical copper deposit prepared to be
imported into the OPPS problem. The mining
operation was considered to continue for 4 years,
and the maximum and minimum mining
capacities were assumed to be 24 and 18 blocks
per year, respectively. The maximum and
minimum processing capacities were considered
to be 15 and 9 ore blocks per year, and the
discount rate was assumed to be 4%.

Box counterpart robust optimization was
systematically applied in this section. Also only
block economic value (coefficients of objective
function) was considered as an uncertain
parameter. Perturbation rate of value can be
represented as follows:

Vi, =01
Vi =02,
Vise; =0.3,
Ve =04,
V' g10; =05

Considering the objective function uncertainty,
first the objective uncertainty was transformed
into constraint uncertainty, and then the
uncertainty set-induced robust counterparts were
derived based on the LHS uncertainty.

Generalization of the Soyster method as a part of
box counterpart robust optimization was

2017

systematically applied in this section. This method
is a worst-case scenario for the mine production
scheduling problem. The worst case scenario
solution means that the uncertainty set covers the
whole uncertainty space. According to the CPLX
solver results, for instance, the NPV’s of
deterministic and the robust box counterpart
known as “interval set” (the box set with Y= 1)
were obtained to be 41565 and 31421$,
respectively, in this research work.

Bertsimas and Sim [23] have presented the
concept of ‘‘price of robustness’, which
considers how ‘‘heavily’’ the objective function
value is penalized when we are guarded against
objective underperformance and/or constraint
violation. Implicitly, this is the difference between
the robust solution and the objective function
value of deterministic state.

The variation in conservatism level (V) versus
NPV is illustrated in Figure 4. It can be observed
that the NPV value decreases by increasing ¥ (i.e.
the size of uncertainty set increases). The results
obtained for NPV and price of robustness are
demonstrated in Table 3. The price of robustness
is a proportion of NPV values by the robust
optimization and deterministic method.

Mine block scheduling and sequencing by exact
CPLEX solver in two different cases
(¥ =0,¥ =4) are demonstrated in Figure 5. This

figure shows that the robust production scheduling
is different from the deterministic state; according
to the price of robustness specific production,
scheduling was obtained.

MassCu(t) = BlockVolume * BlockDensity * g, /100 (13)
EconomicValueProcess($) =
BlockVolume * BlockDensity * g, /100* Recovery * (Selling Price — Selling Cost) (14)
EconomicValueProcess($) = MassCu * Recovery * (Selling Price — Selling Cost)
EconomicValueWaste($) = —BlockVolume * BlockDensity * Mining Cost (15)
Table 2. Example of an economic block model chart prepared to be applied into the model.
Cu grade . Price - Block mass  Mass Cu Econ. Econ.
IX 1Y (%) Density ) m*m (ton) (ton) Process Waste Block Value ($)
1 1 0.04 2.27 5500 100 227 0.0908 =775 -227 -227
2 2 0.17 2.27 5500 100 227 0.3859 393 -227 393
3 1 0.04 2.27 5500 100 227 0.0908 =775 -227 -227
4 12 0.12 2.27 5500 100 227 0.2743 -56. -227 -56
9 8 0.2 2.27 5500 100 227 0.454 663 -227 663
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Figure 2. Geological block model of hypothetical copper mine.
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Table 3. Summary of optimization solutions for box counterpart model (2D model).

Conservatism level (W) of objective function NPV ($) Price of robustness

0, Deterministic model 41565 1

0.2 39537 0.95

0.4 37508 0.90

0.6 35480 0.85

0.8 33451 0.80

1, Soyster model (interval set) 31421 0.75
1.2 29390 0.71
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3.2. Case study: Marvin orebody
The data set used in this section came from the
work of Whittle Challenge [39, 40]. The
economic and technical parameters in Marvin
oreboy are summarized in Table 4.

Table 4. Summary of input distributions and

parameters.
Parameter Value
Recovery 0.88
Selling price ($) 5280
Selling cost ($) 1500
Processing cost ($/t) 4
Mining cost ($/t) 1
Discount rate (%) 4
Dimension of the blocks in X(m) 30
Dimension of the blocks in Y (m) 30
Dimension of the blocks in Z(m) 30

Maximum total mining capacities, 10° (t/year) 70
Maximum processing capacities, 10° (t/year) 40

Maximum dumping capacities, 10° (t/year) 30

In reality, OPPS is known as a NP-hard problem.
The global solution to an NP-hard optimization
problem cannot be achieved within an admissible
time. Thus heuristics (approximation techniques)
have to be used in order to work out these
problems. In this section, a Genetic Algorithm
(GA) was used to solve the OPPS problem. It
should be noted that the problem of current study
(Marvin orebody production scheduling) was not
solved within 20 days using the exact CPLEX
solver, and hence, the authors tried to untangle it
by the GA using the commercial scheduler
package (SimSched DBS) as an alternative
strategy.

The Marvin orebody was characterized as a
Three-Dimensional (3D) array of blocks.
Likewise, the 3D GA array, as the counterpart of
mine 3D block model, was used to represent the
OPPS problem solution space. The penalty and
normalization methods were employed for
handling the capacity and sequencing constraints,
respectively. Based on the deterministic OPPS
solutions by different solvers, NPV’s of SimScehd
DBS and GA were obtained to be 3351 M$ and
3491 MS$, respectively, for the calculations in the
current work. The numerical study was performed
on the Intel Core™i7-4470 computer (3.4 GHz)
with 16 gigabytes of RAM running under
Windows 8.1. The computational time required to
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solve the problem was about 90-120 minutes in
optimum iterations. At the end of the mine life,
the total NPV generated from the solution of GA
schedule was 139 M$ higher than NPV from
SimSched DBS solution, which was about 4%.
After verification of the GA performance, this
method was applied to solve the OPPS problem in
robust form. It is clear that the OPPS problem
solution is sensitive to block economic value
perturbation, weights of ore/waste in each period,
and operation capacities. Perturbation rate in
different states of robust counterpart is
represented as follows:

va =0.05,

ij Waste
Vo =02
f =0.06,
d =0.03,
C =0.15,

A =0.10

The solution of box uncertainty set-based robust
counterpart for simultaneous LHS, RHS, and
objective function uncertainty is shown in Figure
6. The solution is connected with simultaneous
block economic value, block tonnage, and
operational capacity (mining and processing)
uncertainty.

As a stochastic search method, GA essentially
jumped randomly around the solution space, and
also different random and approximate solutions
were achieved in various runs.

The price of robustness in Marvin orebody
production scheduling for box counterpart is
represented in Table 5. According to the GA-
based solution results, for instance, the NPV’s of
Y=032 and WY=12, considering a
simultaneous block economic value, the block
tonnage and operational capacity uncertainty were

obtained to be 3222x10°$ and 2530x10°S,
respectively. It is obvious to note that the optimal
value decreased when we increased the protection
and conservatism level. Therefore, different
production plans according to various conditions
can be selected. Indeed, the block sequencing in
different scheduling plans changes due to various
approach but there is no appropriate visual
indicator to show the difference between
solutions.
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N
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Conservatism Level (V)
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Figure 6. NPV versus different counterpart optimization level, objective function uncertainty, and RHS+LHS
uncertainty for all constraints (Marvin 3D orebody).

Table 5. Summary of optimization solutions for box counterpart model (Marvin 3D model).
GA-based NPV (10°$)  Price of robustness

Conservatism level ()

0, Deterministic model 3491 1
0.2 3222 0.922
0.45 3090 0.885
0.75 2741 0.785
1, Soyster model (interval set) 2680 0.768
1.2 2532 0.725

4. Conclusions

In this paper, the set-induced robust counterpart
(box) optimization technique was applied for the
OPPS problem. Herein, the uncertainty of the
block economic value, block tonnage, and
operational capacities (mining and processing)
were addressed using the robust box counterpart
programming approach. It was concluded that the
OPPS solutions were sensitive to the violation of
block economic value, block weigh, and
operational capacity.

The price of robustness in the OPPS problem was
obtained based on the analysis of the impact of
robust mathematical framework for gquantitatively
measuring the sensitivity on the OPPS problem.
For the hypothetical 2D open-pit mine, the NPV’s
of deterministic and the robust box counterpart,
also known as “interval set”, were obtained to be
41565 and 31421$, respectively. The price of
robustness for this condition was calculated to be
0.75.

Furthermore, additional computations were
executed on a real-state 3D problem, and GA was
used to solve the problem. The investigation
revealed that different states of robust planning
under uncertainty could be scheduled using the
proposed method for the Marvin orebody. It was
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shown that NPV versus conservatism level (¥)
had a descending trend.

A possible direction of further studies would be
integrating the other set-induced robust
counterpart optimization techniques such as
polyhedral set, combined box, and polyhedral
uncertainty.
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Appendix: box counterpart linear robust
optimization with a numerical example
[21].

In set-induced robust optimization, the uncertain
data is assumed to vary in a given uncertainty set,
and the aim is to choose the best solution among
those “immunized” against data uncertainty, i.e.
candidate solutions that remain feasible for all
realizations of the data from the uncertainty set.
Consider the following linear optimization
problem:
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max — 8x, +12x,
st.

a,x, +a,x, <140
X, +8uX, <72

(A1)
Xy, X, 20

Assume that the left-hand side (LHS) constraint
coefficients 4,,,4,,,8,,,d,, are subject to
uncertainty, and they are defined as follow:
a,=10+¢&,

a,=20+2&,

8y =6+0.65,

a, =8+0.85,

(A2)

where &, &,, &,,&, are independent random
variables. The random variables are distributed in

the range of [—1,1] (i.e. the constraint coefficients
a,,a,,4,,8,have maximum 10% perturbation
around their nominal values 10, 20, 6, 8,
respectively). Under the set-induced robust
optimization framework, finding a robust solution
for the above example means to find the best
possible candidate solution such that the
feasibility of the constraints is maintained no
matter what value the random variables realize
within a certain set that belongs to the uncertain
space defined by & e[-11].

In general, consider the following linear
optimization problem:

max > CX

st.

>ax; <b;,Vi

i

(A3)

where &; and b~j represent the true value of the

parameters that are subject to uncertainty. Assume
that the uncertainty affecting each constraint is
independent from each other, and consider the ith
constraint of the above linear optimization
problem, where both the LHS constraint
coefficients and RHS parameters are subject to
uncertainty. Define the uncertainty as follows:

éij =g +§ijé‘ij'vj E‘]J'

b~u‘ =b; +§i06i (Ad)

where a; and b, represent the nominal value of

the parameters; &, and l5j represent constant

ij
perturbation/violation (which are positive); J,

represents the index subset that contains the
variable indices whose corresponding coefficients
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are subject to uncertainty; and &, and &

Vi,Vj €J, are random variables that are subject

to uncertainty. With the above definition, the
original ith constraint can be re-written as:

ZaU i +Za'lxl <b

jed; jed;

(A5)

which can be further reformulated as follows:
Zall j |:_‘:zi06i + Zéjé-ijxj :|Sbi

jed;
In the set induced robust optimization method,
with a pre-defined uncertainty set U, the aim is to

find solutions that remain feasible for any & in

the given uncertainty set U so as to immunize
against infeasibility, i.e.

Zaﬁxj{ngix{ b+ D&, a,JxJH

jed;
Finally, replacing the original constraint in
defined Linear Programing (LP) problem with the
corresponding robust counterpart constraints, the
robust counterpart of the original LP problem is
obtained:

(A6)

(A7)

maX - CX
st.
. (A8)
zau i |:n:la>( {_éi Obi + z 5 auXJ }i| Sbi Vi
Eh jedi
Example continued. Applying the robust

counterpart formulation to the two constraints of

the example, their corresponding robust
counterpart constraints become:

10x, +20x +(gnn;3)xdjl{§nxl +2&,X,} <140 (A9)
6X, +8X, 2t max {0.6&,x, +0.85,,x,} <72 (A10)

where U; and U, are pre-defined uncertainty sets
for (&,,&,) and (&,,&,,), respectively. Example

continued. Considering the first constraint of
example,

(0+&,)x, +(20+2&,)x, <140 (Al11)

and assuming that the uncertainty set related to
(&1.&,) is defined by box counterpart, the

corresponding  robust counterpart for this
constraint is:
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10x, + 20X, + W(|x, |+ 2|x,,[) <140 (A12)

The first robust counterpart constraint with a
different value of ¥ is illustrated in Figure A. It
can be observed that as the parameter value ¥
increases (i.e. the size of the uncertainty set
increases), the feasible set of the resulting robust
counterpart optimization problem contracts.

T T .

: — Criginal constraint (4=0)
BF -~ ~ Robust counterpart (#=0.5)

WS Robust counterpart (4=1)
5k e
.
4 L .
KN

3
2 NN
1 L
0 2

0 2 4 3 8 10 14
x1

Figure A. lllustration of box counterpart constraint.

Similarly, for the second constraint of the
example, the box uncertainty set induced robust
counterpart is:

6X, +8x, +W(0.6|x,|+0.8|x,|< 72 (A13)

Notice that the robust counterpart formulation is
constructed constraint by constraint, and different
parameter values can be applied for different
constraints. The complete box uncertainty set
induced robust counterpart formulation of this
example with different parameters ¥; and ¥, for
the two constraints is:

max > 8x, +12x,

st.

10x, + 20X, + W, (x| + 2|x .| <140
6X, +8x, + W, (0.6[x,| +0.8]x | <72

X1, X, 20

(Al4)

which is equivalent to the following problem
since the variables are positive:

max - 8x, +12x,

st.

10x, +20x, + ¥, (x, + 2x,) <140
6x, +8x, +¥,(0.6x,+0.8x,) <72
X, X, 20

(A15)
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