
 

 

 

 

JME 
Journal of Mining & Environment, 
Vol.8, No.2, 2017, 255-267. 

DOI: 10.22044/jme.2017.849 
 

Robust production scheduling in open-pit mining under uncertainty: a box 

counterpart approach 

 
A. Alipour

1*
, A.A. Khodaiari

1
, A. Jafari

1
 and R. Tavakkoli-Moghaddam

2, 3
 

1. School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran 

2. School of Industrial Engineering, College of Engineering, University of Tehran, Tehran, Iran 

3. LCFC, Arts et Métier ParisTech, Centre de Metz, France 

 
Received 4 July 2016; received in revised form 6 January 2017; accepted 18 January 2017 

*Corresponding author: aref.alipour@gmail.com (A. Alipour). 

 

Abstract 

Open-Pit Production Scheduling (OPPS) problem focuses on determining a block sequencing and scheduling 

to maximize Net Present Value (NPV) of the venture under constraints. The scheduling model is critically 

sensitive to the economic value volatility of block, block weight, and operational capacity. In order to deal 

with the OPPS uncertainties, various approaches can be recommended. Robust optimization is one of the 

most applicable methods in this area used in this study. Robust optimization based on the box counterpart 

formulation is applied to deal with the OPPS problem. To have a comparison between the solutions of the 

box counterpart optimization model and the deterministic model, a Two-Dimensional (2D) numerical study 

of a hypothetical open-pit mine is conducted followed by additional computations on the actual large-scale 

instances (Marvin orebody). This investigation shows that the different features of the robust planning under 

uncertainty can be scheduled. Also the price of robustness is obtained in different levels of conservatism. 

 

Keywords: Open-Pit Mine Production Scheduling, Robust Counterpart Optimization, Uncertainty, Block 

Economic Value. 

1. Introduction 

Open-pit mines are typically represented by 

discretization of the orebody consisting of  

equal-sized units known as blocks. Geological 

attributes such as weight, grade, rock description, 

and location are assigned to individual blocks  

[1-3]. OPPS concentrates on determining a block 

extraction sequence in a way that maximizes NPV 

of the venture under access, mining capacity, 

processing capacity constraints, and some other 

criteria such as blending constraints (extracted ore 

grade) [4]. 

The optimization of OPPS has a long history, and 

numerous studies have addressed different 

features of the deterministic OPPS problem. In 

1967, the graph theory and network flow-based 

approaches were applied [5]. Tolwinski and 

Underwood [6] have developed a dynamic 

programing combined with a heuristic method. 

Caccetta and Hill [7] have presented a  

Mixed-Integer Programming (MIP) model and 

introduced a branch-and-cut algorithm to solve the 

problem. Lambert and Newman [8] have 

employed tailored Lagrangian relaxation in the 

OPPS formulation. Detailed information on the 

OPPS formulation can be found in a tutorial of 

fundamental OPPS mathematical formulation 

models by Lambertet al. [9]. Shishvan and 

Sattarvand [10] have applied an ant colony 

optimization to untangle an extended OPPS 

problem for a real-world mine. Liu and Kozan 

[11] have developed two different graph-based 

algorithms to tackle with large-scale benchmark 

OPPS instances from Mine Lib. To find more 

related research works in the area of OPPS 

problem, the readers are referred to an article by 

Kozan and Liu [12]. 

Production scheduling problem solutions are 

critically sensitive to price volatility, ore grade 
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uncertainty, operational capacity, etc. Hence, the 

scheduling process involves a significant degree 

of uncertainty. In order to deal with uncertainties, 

various approaches can be recommended, some of 

which include the chance-constrained 

programming, stochastic programing with 

recourse and robust stochastic optimization, fuzzy 

programing, and robust optimization programing. 

Due to the inherent limitations and compatibility 

of chance-constrained and fuzzy programing 

methods, their application is limited in mine 

production scheduling problems. In the  

scenario-based optimization methods such as 

stochastic programing with resource framework, 

considering conditional simulation onerous 

procedure and large number of blocks, a  

large-scale optimization problem is resulted. (The 

readers are referred to references [13-15].) To see 

more related research works in the area of 

uncertain OPPS problem, the readers are referred 

to the references [16-20]. 

 The robust optimization method is an applicable 

option in dealing with mine production scheduling 

problem uncertainties. Data uncertainties may 

lead to quality, optimality, and feasibility 

problems when deterministic models are used. 

Hence, it is required to generate a solution 

immune to data uncertainty. In other words, the 

solution should be robust [21]. The robust 

optimization theory provides a framework to 

handle the uncertainty of parameters in the 

optimization problems that could immunize the 

optimal solution for any realization of the 

uncertainty in a given bounded uncertainty set 

[22-24]. 

The variation in response is derived from 

uncertainties in the design variables and/or design 

parameters [21, 25]. The purpose of global robust 

optimization is to find a design with the target 

response and the smallest variation. Different 

types of robust framework have been developed. 

Soyster [26] have considered simple perturbations 

in the data aiming to find a framework of robust 

counterpart optimization such that the resulting 

solutions are feasible under all possible 

perturbations. 

The robust counterpart optimization techniques 

are broadly used in engineering optimization 

problems. Set-induced robust counterpart 

optimization techniques include interval set, 

combined interval and ellipsoidal, adjustable box, 

pure ellipsoidal, pure polyhedral, combined 

interval, ellipsoidal, and polyhedral set [21]. Lin 

et al. [27] have introduced mixed integer linear 

optimization (MILP) robust optimization 

formulation. Verderame and Floudas have applied 

both the continuous and discrete uncertainty 

distributions to extend the robust optimization 

framework [28]. The degree of solution 

conservatism has been considered in Bertsimas 

and Sim [23]. A combined interval and polyhedral 

uncertainty set with coefficient uncertainty has 

been presented for robust linear programming. 

Afterward, Bertsimas and co-workers [29] have 

applied a robust optimization framework in the 

fields of discrete programming. Averbakh [22] 

has suggested a general approach to find min-max 

regret solutions for a class of combinatorial 

problems with interval uncertain objective 

function coefficients based on reducing the 

problem with uncertainty to a set of deterministic 

problems. Equivalency of set-based robust 

optimization formulations and conditional  

value-at-risk (CVaR) bound-based 

approximations to individual chance constraints 

has been demonstrated in Chen et al.’s work [30]. 

 Mulvey et al. [31] and Yu and Li [32] have 

developed a stochastic model called RSO to 

capture the randomness of the uncertain 

parameters. The aim of RSO is not only to 

maximize/minimize the objective function but 

also to obtain a robust solution. In other words, 

RSO attempts to generate a solution that is 

insensitive to different realizations of input data. 

Ghaoui et al. [33] have used the worst-case 

probability distributions to extend worst-case 

value-at-risk (VaR) bounds for a robust linear 

optimization. 

Price, costs, and discount rate used in OPPS 

problem depend upon a series of unknown future 

events, and are modelled by stochastic processes. 

There have been more investigations conducted 

regarding ore grade (geological) and price 

uncertainty in open-pit mine stochastic production 

scheduling problems [4, 19, 34, 35]. 

The application of the three different types of 

robust optimization in OPPS problem has been 

reported in different research works. Kumral [19] 

has presented a stochastic robust optimization 

model to deal with uncertainty in block grades, 

price, mining, and processing costs. Espinoza et 

al. [36] have implemented an uncertainty-based 

robust optimization method to consider the 

volatility of metal. Lagos et al. [37] have 

compared Value-at-Risk, Conditional Value-at-

Risk, and a proposed Modulated Convex-Hull 

robust optimization model for optimization under 

ore-grade uncertainty of each block. In this work, 

robust counterpart optimization formulation based 
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on the box counterpart was applied to handle the 

OPPS problem. 

2. Robust counterpart optimization 

Robust optimization is an approach used for 

modeling optimization problems under 

uncertainty, where the modeler aims to find 

optimal decisions for the worst-case realization of 

the uncertainties within a given set. Typically, the 

original uncertain optimization problem is 

converted into an equivalent deterministic form 

(called the robust counterpart) using strong duality 

arguments and is solved using standard 

optimization algorithms [21]. 

In set induced robust optimization, the uncertain 

data is assumed to vary in a given uncertainty set, 

and the aim is to choose the best solution among 

those “immunized” against data uncertainty, i.e. 

candidate solutions that remain feasible for all 

realizations of the data from the uncertainty set. In 

general, consider the following linear optimization 

problem with uncertainty in the left hand side 

(LHS) constraint coefficients, right hand side 

(RHS), and objective function coefficients: 

max

. .

, 





j j

j

ij j i

j

c x

s t

a x b i

 (1) 

where jx  can be either a continuous or an integer 

variable. Note that the objective and RHS 

uncertainty can be transformed into LHS 

uncertainty as follows: 

0

0 1

max

. .

0

0,



 

  





j j

j

i ij j

j

z

s t

z c x

b x a x i

x

 

(2) 

Thus without loss of generality, we focused on the 

following general ith constraint of a (mixed 

integer) linear optimization problem considering 

only the LHS uncertainty: 

 ij j i

j

a x b  (3) 

and a  is subject to uncertainty. Define the 

uncertainty as follows: 

ˆ , ,   ij ij ij ij ia a a j J  (4) 

where ija  represents the nominal value of the 

parameters, îja  represents positive constant 

perturbations, ij  represents independent random 

variables that are subject to uncertainty, and iJ  

represents the index subset that contains the 

variables whose coefficients are subject to 

uncertainty. Constraint (3) can be re-written by 

grouping the deterministic part and the uncertain 

part for the LHS of (3) as follows: 

ˆ


  
i

ij j ij ij j i

j j J

a x a x b  (5) 

In the set induced robust optimization method, the 

aim is to find solutions that remain feasible for 

any ij  in the given uncertainty set U so as to 

immunize against infeasibility, i.e. 

ˆmax 



  
  

  
 

i

ij j U ij ij j i

j j J

a x a x b   (6) 

2.1. Uncertainty Sets 

The formulation of the robust counterpart 

optimization model is related to the selection of 

the uncertainty set U . In this section, three 

general types of uncertainty sets are introduced. 

For the sake of simplicity, we eliminated the 

constraint index i  in the random vector . 

   
" "

, 
      j i

Box US

U j J    

 
(7) 
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j
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
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
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1
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, ,
i

j j i

j J

Box Polyhedral US

U j J  





  
       
  


 (9) 

where  and   are the adjustable parameters 

controlling the size of the uncertainty sets. 

Different advanced frameworks of uncertainty 

sets are introduced in references [21, 38]. 

2.2. Box counterpart optimization formulation 

For constraint (5), its robust counterpart 

optimization formulation (6) was derived for 

different uncertainty sets introduced above as 

follows; if the set U is the box uncertainty set (7), 
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the corresponding robust counterpart constraint 

(6) will be equivalent to the following constraints: 

ˆ


  
i

ij j ij j i

j j J

a x a u b  

  j j ju x u  

(10) 

The box uncertainty set can be described using the 

norm  of the uncertain data vector, as follows: 

   , 
     j iU j J    , where 

Ψ is the adjustable parameter controlling the size 

of the uncertainty set. Figure 1 illustrates the box 

uncertainty set for parameter ja  defined by 

, 1,2  j jaja a j , where ja  denotes the true 

value of the parameter, ja  denotes the nominal 

value of the parameter, j  denotes the 

uncertainty, and ja  represents a constant 

perturbation. If the uncertain parameters are 

known to be bounded in given intervals 

,      ij ij ij ij ij ia a a a a j J , the uncertainty 

can be represented by ˆ ij ij jaija a  , and this 

results in the interval uncertainty set, which is a 

special case of box uncertainty set when

 1( . ., 1, )     j ii e U j J   [24]. For the 

first time, Soyster [26] used the “interval 

uncertainty set” to denote the box set with Ψ= 1. 

To attain robust solutions, we looked for solutions 

feasible for any realization of the uncertain data in 

a predefined uncertainty set. More details about 

linear robust optimization accompanied with a 

simple numerical example are presented in the 

appendix (see reference [21]). 

 

 
Figure 1. Illustration of box uncertainty set [21]. 

 

3. Computational study for mine robust 

production scheduling 

3.1. Implementation and evaluation with a 

simple example 

Mine production scheduling focuses on 

determining a block mining in order to maximize 

NPV under sequencing and capacity constraints. 

The OPPS problem in deterministic form can be 

presented using the following formulations [19]: 

Let ijx  be the decision variable and T  be the 

number of mining periods. N  denotes the number 

of blocks, 
ijV  is the present value of block j  in 

period i , 
jd  is the ore mass in block j , , A A  

show the processing capacity (maximum and 

minimum capacity, respectively), jv is the waste 

mass in block j , and , C C  are mining capacity. 

Our goal was to find: 
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(11) 
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The sequencing constraint (11.2) means that in 

order to (?) extract a block, the overlying blocks 

should be mined either earlier or in the same 

period. 

The mining capacity constraint (11.3) is chosen 

according to the economic and operational 

considerations. 

Processing capacity constraint (11.4): In the  

open-pit mining, both ore and waste blocks are 

mined due to the sequencing constraint. While 

waste blocks are sent to the waste dumps, ore 

blocks are transferred to the mineral processing 

plant. The amount of ore blocks should be in 

commensurate with the processing capacity. 

Block conservation constraint (11.5): This 

constraint guarantees that a block can be mined 

just for one time. 

Deterministic OPPS approaches do not consider 

data uncertainties. The implementations based on 

deterministic solutions may lead to significant 

NPV losses/rewards and/or capacity utilization 

problems. Now we introduce the complete box 

uncertainty set that induces robust counterpart 

formulation for OPPS with constraints. It can be 

expressed as follows: 

where ijV  denotes the nominal values of the 

parameters,  denotes the uncertainty, and 
ˆ, ,   , ˆˆ ,  ,ˆ ˆˆ ˆ ˆ , ,   

ij j jV ACr v C A d  represent constant 

perturbation of the objective function and 

constraint coefficients. 

A hypothetical copper deposit with relevant data 

for developing economic block model was used to 

explain the details of the robust OPPS method 

implementation. Besides, the open-pit mine was 

typically represented by 2D blocks in this 

investigation. The effective parameters for 

calculating the economic values of blocks are 

presented in Table 1. 
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Table 1. Parameters used for calculating economic 

values of blocks. 

Item Description 

Recovery 0.88 

Selling price ($/t) 5500 

Selling cost ($/t) 1000 

Processing cost ($/t) 4 

Mining cost ($/t) 1 

Discount rate (%) 4 

Dimension of blocks in X(m) 10 

Dimension of blocks in Y(m) 10 

 

Each block must have associated economic values 

related to its possible destination. Each field 

related to the economic value (economic value 

Process/Waste) has to represent the value of 

blocks as a function of its destination, grades, 

recovery, cost of mining, transport, treatment, 

selling price, etc. The economic parameters of 

blocks for block value calculations are presented 

in Table 2. In this table, the maximum value of 

economic process and economic waste of each 

block is considered as the block value. The 

economic value of a block is equal to its selling 

price minus the extraction costs. For example, for 

a copper mine, the economic value of a block is 

calculated as follows in Equations (13) to (15). 

For further explanation, the block economic value 

calculation method is presented in Table 2. 

A hypothetical copper deposit with geological 

block model containing 200 blocks was assumed 

and subjected to scheduling to explain the details 

of the proposed algorithm implementation (Figure 
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2). Table 1 illustrates the technical and economic 

parameters used for the economic block model. 

Figure 3 demonstrates the economic block model 

of the hypothetical copper deposit prepared to be 

imported into the OPPS problem. The mining 

operation was considered to continue for 4 years, 

and the maximum and minimum mining 

capacities were assumed to be 24 and 18 blocks 

per year, respectively. The maximum and 

minimum processing capacities were considered 

to be 15 and 9 ore blocks per year, and the 

discount rate was assumed to be 4%. 

Box counterpart robust optimization was 

systematically applied in this section. Also only 

block economic value (coefficients of objective 

function) was considered as an uncertain 

parameter. Perturbation rate of value can be 

represented as follows: 

1,2

3,4

5,6

7,8

9,10

ˆ 0.1,

ˆ 0.2,

ˆ 0.3,

ˆ 0.4,

ˆ 0.5





















i j

i j

i j

i j

i j

V

V

V

V

V

. 

Considering the objective function uncertainty, 

first the objective uncertainty was transformed 

into constraint uncertainty, and then the 

uncertainty set-induced robust counterparts were 

derived based on the LHS uncertainty. 

Generalization of the Soyster method as a part of 

box counterpart robust optimization was 

systematically applied in this section. This method 

is a worst-case scenario for the mine production 

scheduling problem. The worst case scenario 

solution means that the uncertainty set covers the 

whole uncertainty space. According to the CPLX 

solver results, for instance, the NPV’s of 

deterministic and the robust box counterpart 

known as “interval set” (the box set with Ψ= 1) 

were obtained to be 41565 and 31421$, 

respectively, in this research work. 

Bertsimas and Sim [23] have presented the 

concept of ‘‘price of robustness’’, which 

considers how ‘‘heavily’’ the objective function 

value is penalized when we are guarded against 

objective underperformance and/or constraint 

violation. Implicitly, this is the difference between 

the robust solution and the objective function 

value of deterministic state. 

The variation in conservatism level (Ψ) versus 

NPV is illustrated in Figure 4. It can be observed 

that the NPV value decreases by increasing Ψ (i.e. 

the size of uncertainty set increases). The results 

obtained for NPV and price of robustness are 

demonstrated in Table 3. The price of robustness 

is a proportion of NPV values by the robust 

optimization and deterministic method. 

Mine block scheduling and sequencing by exact 

CPLEX solver in two different cases 

( 0, 4)     are demonstrated in Figure 5. This 

figure shows that the robust production scheduling 

is different from the deterministic state; according 

to the price of robustness specific production, 

scheduling was obtained. 

( ) * * /100CuMassCu t BlockVolume BlockDensity g  (13) 

Pr ($)

* * /100*Recov *( Pr Cos )Cu

EconomicValue ocess

BlockVolume BlockDensity g ery Selling ice Selling t





 

Pr ($) *Recov *( Pr Cos )EconomicValue ocess MassCu ery Selling ice Selling t 

 
(14) 

($) * * CosEconomicValueWaste BlockVolume BlockDensity Mining t 

 

(15)

 

 
Table 2. Example of an economic block model chart prepared to be applied into the model. 

IX IY 
Cu grade 

(%) 
Density 

Price 

($) 
m*m 

Block mass 

(ton) 

Mass Cu 

(ton) 

Econ. 

Process 

Econ. 

Waste 
Block Value ($) 

1 1 0.04 2.27 5500 100 227 0.0908 -775 -227 -227 

2 2 0.17 2.27 5500 100 227 0.3859 393 -227 393 

3 1 0.04 2.27 5500 100 227 0.0908 -775 -227 -227 

4 12 0.12 2.27 5500 100 227 0.2743 -56. -227 -56 

9 8 0.2 2.27 5500 100 227 0.454 663 -227 663 
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Figure 2. Geological block model of hypothetical copper mine. 

 

 
Figure 3. Economic block model of hypothetical copper mine. 

 

 
Figure 4. NPV versus different box counterpart optimization level, Ψ. 
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Table 3. Summary of optimization solutions for box counterpart model (2D model). 

Conservatism level (Ψ) of objective function NPV ($) Price of robustness 

0, Deterministic model 41565 1 

0.2 39537 0.95 

0.4 37508 0.90 

0.6 35480 0.85 

0.8 33451 0.80 

1, Soyster model (interval set) 31421 0.75 

1.2 29390 0.71 

 

 

 
Figure 5. Production scheduling solutions in deterministic and robust form ( 0, 4)    . 
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3.2. Case study: Marvin orebody 

The data set used in this section came from the 

work of Whittle Challenge [39, 40]. The 

economic and technical parameters in Marvin 

oreboy are summarized in Table 4. 

 
Table 4. Summary of input distributions and 

parameters. 

Parameter Value 

Recovery 0.88 

Selling price ($) 5280 

Selling cost ($) 1500 

Processing cost ($/t) 4 

Mining cost ($/t) 1 

Discount rate (%) 4 

Dimension of the blocks in X(m) 30 

Dimension of the blocks in Y(m) 30 

Dimension of the blocks in Z(m) 30 

Maximum total mining capacities, 10
6
 (t/year)  70 

Maximum processing capacities, 10
6
 (t/year)

 
40 

Maximum dumping capacities, 10
6
 (t/year)  30 

 

In reality, OPPS is known as a NP-hard problem. 

The global solution to an NP-hard optimization 

problem cannot be achieved within an admissible 

time. Thus heuristics (approximation techniques) 

have to be used in order to work out these 

problems. In this section, a Genetic Algorithm 

(GA) was used to solve the OPPS problem. It 

should be noted that the problem of current study 

(Marvin orebody production scheduling) was not 

solved within 20 days using the exact CPLEX 

solver, and hence, the authors tried to untangle it 

by the GA using the commercial scheduler 

package (SimSched DBS) as an alternative 

strategy. 

The Marvin orebody was characterized as a 

Three-Dimensional (3D) array of blocks. 

Likewise, the 3D GA array, as the counterpart of 

mine 3D block model, was used to represent the 

OPPS problem solution space. The penalty and 

normalization methods were employed for 

handling the capacity and sequencing constraints, 

respectively. Based on the deterministic OPPS 

solutions by different solvers, NPV’s of SimScehd 

DBS and GA were obtained to be 3351 M$ and 

3491 M$, respectively, for the calculations in the 

current work. The numerical study was performed 

on the Intel Core™i7-4470 computer (3.4 GHz) 

with 16 gigabytes of RAM running under 

Windows 8.1. The computational time required to 

solve the problem was about 90-120 minutes in 

optimum iterations. At the end of the mine life, 

the total NPV generated from the solution of GA 

schedule was 139 M$ higher than NPV from 

SimSched DBS solution, which was about 4%. 

After verification of the GA performance, this 

method was applied to solve the OPPS problem in 

robust form. It is clear that the OPPS problem 

solution is sensitive to block economic value 

perturbation, weights of ore/waste in each period, 

and operation capacities. Perturbation rate in 

different states of robust counterpart is 

represented as follows: 

,

,

ˆ 0.05,

ˆ 0.2,

ˆ 0.06,

ˆ 0.03,

ˆ 0.15,

ˆ 0.10













ij Waste

ij Ore

V

V

r

d

C
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The solution of box uncertainty set-based robust 

counterpart for simultaneous LHS, RHS, and 

objective function uncertainty is shown in Figure 

6. The solution is connected with simultaneous 

block economic value, block tonnage, and 

operational capacity (mining and processing) 

uncertainty. 

As a stochastic search method, GA essentially 

jumped randomly around the solution space, and 

also different random and approximate solutions 

were achieved in various runs. 

The price of robustness in Marvin orebody 

production scheduling for box counterpart is 

represented in Table 5. According to the GA-

based solution results, for instance, the NPV’s of 

0.32   and 1.2  , considering a 

simultaneous block economic value, the block 

tonnage and operational capacity uncertainty were 

obtained to be 63222 10 $ and 
62530 10 $, 

respectively. It is obvious to note that the optimal 

value decreased when we increased the protection 

and conservatism level. Therefore, different 

production plans according to various conditions 

can be selected. Indeed, the block sequencing in 

different scheduling plans changes due to various 

approach but there is no appropriate visual 

indicator to show the difference between 

solutions. 
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Figure 6. NPV versus different counterpart optimization level, objective function uncertainty, and RHS+LHS 

uncertainty for all constraints (Marvin 3D orebody). 

 
Table 5. Summary of optimization solutions for box counterpart model (Marvin 3D model). 

Conservatism level (Ψ) GA-based NPV (10
6
$) Price of robustness 

0, Deterministic model 3491 1 

0.2 3222 0.922 

0.45 3090 0.885 

0.75 2741 0.785 

1, Soyster model (interval set) 2680 0.768 

1.2 2532 0.725 

 

4. Conclusions 

In this paper, the set-induced robust counterpart 

(box) optimization technique was applied for the 

OPPS problem. Herein, the uncertainty of the 

block economic value, block tonnage, and 

operational capacities (mining and processing) 

were addressed using the robust box counterpart 

programming approach. It was concluded that the 

OPPS solutions were sensitive to the violation of 

block economic value, block weigh, and 

operational capacity. 

The price of robustness in the OPPS problem was 

obtained based on the analysis of the impact of 

robust mathematical framework for quantitatively 

measuring the sensitivity on the OPPS problem. 

For the hypothetical 2D open-pit mine, the NPV’s 

of deterministic and the robust box counterpart, 

also known as “interval set”, were obtained to be 

41565 and 31421$, respectively. The price of 

robustness for this condition was calculated to be 

0.75. 

Furthermore, additional computations were 

executed on a real-state 3D problem, and GA was 

used to solve the problem. The investigation 

revealed that different states of robust planning 

under uncertainty could be scheduled using the 

proposed method for the Marvin orebody. It was 

shown that NPV versus conservatism level (Ψ) 

had a descending trend. 

A possible direction of further studies would be 

integrating the other set-induced robust 

counterpart optimization techniques such as 

polyhedral set, combined box, and polyhedral 

uncertainty. 
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 Appendix: box counterpart linear robust 

optimization with a numerical example 

[21]. 
In set-induced robust optimization, the uncertain 

data is assumed to vary in a given uncertainty set, 

and the aim is to choose the best solution among 

those “immunized” against data uncertainty, i.e. 

candidate solutions that remain feasible for all 

realizations of the data from the uncertainty set. 

Consider the following linear optimization 

problem: 

1 2

11 1 12 2

21 1 22 2

1 2
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(A1) 

Assume that the left-hand side (LHS) constraint 

coefficients 
11a , 12a , 12a ,

22a  are subject to 

uncertainty, and they are defined as follow: 
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21 21
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(A2) 

where 
11 , 

12 , 
21 ,

22  are independent random 

variables. The random variables are distributed in 

the range of  1,1  (i.e. the constraint coefficients 

11a ,
12a ,

12a ,
22a have maximum 10% perturbation 

around their nominal values 10, 20, 6, 8, 

respectively). Under the set-induced robust 

optimization framework, finding a robust solution 

for the above example means to find the best 

possible candidate solution such that the 

feasibility of the constraints is maintained no 

matter what value the random variables realize 

within a certain set that belongs to the uncertain 

space defined by  1,1 ij . 

In general, consider the following linear 

optimization problem: 

max

. .

,  ij j i

j

cx

s t

a x b i

 
(A3) 

where ija  and jb  represent the true value of the 

parameters that are subject to uncertainty. Assume 

that the uncertainty affecting each constraint is 

independent from each other, and consider the ith 

constraint of the above linear optimization 

problem, where both the LHS constraint 

coefficients and RHS parameters are subject to 

uncertainty. Define the uncertainty as follows: 

0

ˆ ,

ˆ

   

 

ij ij ij ij j

ij ij i i

a a a j J

b b b





 (A4) 

where ija  and jb represent the nominal value of 

the parameters; îja  and ˆ
jb represent constant 

perturbation/violation (which are positive); 
iJ  

represents the index subset that contains the 

variable indices whose corresponding coefficients 
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are subject to uncertainty; and 
0i  and ij

,   ii j J  are random variables that are subject 

to uncertainty. With the above definition, the 

original ith constraint can be re-written as: 

 

  
i i

ij j ij j i

j J j J

a x a x b  
(A5) 

which can be further reformulated as follows: 

0
ˆ ˆ



 
    
 

 
i

ij j i i ij ij j i

j j J

a x b a x b   (A6) 

In the set induced robust optimization method, 

with a pre-defined uncertainty set U, the aim is to 

find solutions that remain feasible for any  in 

the given uncertainty set U so as to immunize 

against infeasibility, i.e. 

0
ˆ ˆmax



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

   (A7) 

Finally, replacing the original constraint in 

defined Linear Programing (LP) problem with the 

corresponding robust counterpart constraints, the 

robust counterpart of the original LP problem is 

obtained: 

0

max

. .

ˆ ˆmax ,




   
      

    
 

i

ij j i i ij ij j i
U

j j J

cx

s t

a x b a x b i


 

 

(A8) 

Example continued. Applying the robust 

counterpart formulation to the two constraints of 

the example, their corresponding robust 

counterpart constraints become: 

 
11 12 1

1 2 11 1 12 2
( , )

10 20 max 2 140

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x x x x
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 
21 22 2

1 2 21 1 22 2
( , )

6 8 max 0.6 0.8 72

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U

x x x x
 

   (A10) 

where U1 and U2 are pre-defined uncertainty sets 

for 
11 12( , )   and 

21 22( , )  , respectively. Example 

continued. Considering the first constraint of 

example, 

11 1 12 2(10 ) (20 2 ) 140   x x   (A11) 

and assuming that the uncertainty set related to 

11 12( , )   is defined by box counterpart, the 

corresponding robust counterpart for this 

constraint is: 

1 2 1 210 20 ( 2 ) 140   x x x x  (A12) 

The first robust counterpart constraint with a 

different value of Ψ is illustrated in Figure A. It 

can be observed that as the parameter value Ψ 

increases (i.e. the size of the uncertainty set 

increases), the feasible set of the resulting robust 

counterpart optimization problem contracts. 

 
Figure A. Illustration of box counterpart constraint. 

 

Similarly, for the second constraint of the 

example, the box uncertainty set induced robust 

counterpart is: 

1 2 1 26 8 (0.6 0.8 72   x x x x  (A13) 

Notice that the robust counterpart formulation is 

constructed constraint by constraint, and different 

parameter values can be applied for different 

constraints. The complete box uncertainty set 

induced robust counterpart formulation of this 

example with different parameters Ψ1 and Ψ2 for 

the two constraints is: 
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(A14) 

which is equivalent to the following problem 

since the variables are positive: 
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 چکیده:

ریيزی  های کلاسيی  برناميه  پارادایم. در گیردریزی ریاضی صورت میبرنامه هایمعادن روباز با استفاده از مدلهای ریزی زمانی استخراج بلوکبرنامهطور معمول به 

ریيزی اسيتخراج،   برناميه  در مؤثری هاکه پارامترشوند، در صورتی در نظر گرفته می اسمی و معادل با مقادیر)پارامترها( معین )قطعی(  مدلهای ورودی  داده ،ریاضی

ریيزی اسيتواری کيه در مقابيس نوسيانات و      ميدل برناميه   ی ارائيه رو  های عملیاتی در معرض نوسان هستند؛ از ایين ارزش اقتصادی بلوک، وزن بلوک و ظرفیتنظیر 

حاضر ميدل   تحقیقداد. در  ریزی تولید معادن روباز را ارتقا خواهدی برنامهجواب آن شدنی باشد، سطح نگرش به مقوله بودن نهیبهاغتشاشات تاب آورده و در عین 

سيازی اسيتوار   منظيور معيادل   ای بيه محدب جعبه عدم قطعیتی ریزی تولید استوار ی  کانسار فرضی مس در حالت دوبعدی ارائه و حس شده است. مجموعهبرنامه

. حکایيت از تفياوت رویکردهيا دارد    قطعی و استوار نتایج حس مدل در دو حالت است؛ مورد توجه قرار گرفتهکاری و اثر سطوح مختلف محافظه رفته کار  بهاین مدل 

کاری بيرای آن تعیيین   ی استواری در سطوح مختلف محافظهشده و هزینه یساز ادهیپعدی برای کانسار مس ماروین بهمچنین مدل استوار پیشنهادی در حالت سه

 سازی در معادن بزرگ است.س  مورد انتظار، قابس استفاده و پیادهشده است. نتایج تحقیق با توجه به نوع نگرش و سطح ری

 سازی استوار، عدم قطعیت، ارزش اقتصادی بلوک.ریزی تولید در معادن روباز، بهینهبرنامه کلمات کلیدی:

 

 


