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Abstract

Inversion of magnetic data is an important step towards interpretation of the practical data. Smooth inversion
is a common technique for the inversion of data. Physical bound constraint can improve the solution to the
magnetic inverse problem. However, how to introduce the bound constraint into the inversion procedure is
important. Imposing bound constraint makes the magnetic data inversion a non-linear inverse problem. In
this work, a new algorithm is developed for the 3D inversion of magnetic data, which uses an efficient
penalization function for imposing the bound constraint and Gauss Newton method to achieve the solution.
An adaptive regularization method is used in order to choose the regularization parameter in this inversion
approach. The inversion results of synthetic data show that the new method can produce models that
adequately match the real location and shape of the synthetic bodies. The test carried out on the field data
from Mt. Milligan copper-gold porphyry deposit shows that the new inversion approach can produce the

magnetic susceptibility models consistent with the true structures.
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1. Introduction

Magnetic surveys can provide useful information
on the Earth’s interior. Magnetic measurements
are usually used to delineate magnetic anomalous
bodies, and indicate their locations and depths.
One of the most important topics in the
guantitative interpretation of the potential field
data is the inversion of practical data [1].
Inversion can be defined as a mathematical
procedure that constructs a sub-surface property
(susceptibility) model using the measured
(magnetic) data by incorporating a-priori
information as available. The recovered models
must predict the measured data adequately [2]. 3D
inversion of potential field data such as magnetic
data is generally difficult [3]. The main difficulty
is the non-uniqueness of the solution in magnetic
inverse problem. There is infinite equivalent
source distributions that produce the same
measured magnetic data set [4]. In order to
overcome this issue, the standard approach is to
apply a-priori information. Several approaches

have been introduced for incorporating priori
information into the inversion process [5-15].

Last and Kubik (1983) [5] have developed the
compact inversion method, which produces a
compact and structurally simple model. Guillen
and Menichetti (1984) [16] have minimized the
moment of inertia of the body with respect to the
center within the body or along the single axis
passing through it. Barbosa and Silva (1994) [6]
have generalized the moment of inertia functional
to impose compactness along several axes. Li and
Oldenburg (1996, 1998) [7, 8] have developed a
model objective function that produces smooth
models. This method can locate anomaly sources
accurately. Nevertheless, the values for the
recovered model are smaller than the true values
due to the smoothness effect of the objective
function. Portniaguine and Zhdanov (1999) [12]
have developed a focusing inversion method
based upon the compact inversion method for
potential field data. Barbosa and Silva (2006) [17]
have developed an interactive method for
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inverting the magnetic data with interfering
anomalies produced by multiple, complex, and
closely separated geologic sources. Fargquharson
(2008) [13] has used the L1 measure of Li and
Oldenburg’s model objective function to recover
dipping structures and models, which have angled
interfaces. Lelievre et al. (2009) [14] have used
the Li and Oldenburg’s (1996, 1998) [7, 8] model
objective function and developed advanced
constrained inversion by geologic information.
Zhang et al. (2015) [15] have improved the Li and
Oldenburg’s method by applying Lagrangian
multipliers in the model objective function to add
geological constraints. In the 3D inversion of
potential field data, particular bounds of the
physical property may be known. This physical
bound constraint can improve the solution and
make it more feasible [18]. Consequently, how to
introduce the bound constraint into the inversion
procedure  becomes an important  issue.
Portniaguine and Zhdanov (1999, 2002) [12, 19]
have used a penalization algorithm to impose
bound constraint in focusing inversion of potential
field data. Li and Oldenburg (2003) [9] have
chosen a logarithmic barrier method incorporating
bound constraint on the recovered smooth model.
Zhang et al. (2015) [15] have imposed bound
constraint in smooth inversion of potential field
data via a method using the Lagrangian
multipliers. However, imposing bound constraint
makes the magnetic data inversion a non-linear
inverse problem. Therefore, the logarithmic
barrier and Lagrangian multiplier’s methods
increase the computation time. Another issue
involved in solving the non-linear inverse
problems is choosing the regularization parameter
that can increase the computation time [20].

In this work, we developed a new 3D magnetic
data inversion method based upon the Gauss-
Newton (GN) algorithm that can incorporate
bound constraint on the recovered model using
penalization algorithm introduced by Portniaguine
and Zhdanov (1999, 2002) [12, 19]. Furthermore,
we used an adaptive regularization method for
regularization parameter selection in our magnetic
data inversion method. Finally, the capabilities of
the proposed method were illustrated by its
application to the inversion of a synthetic data set
and to the 3D inversion of magnetic data from the
Mt. Milligan deposit at British Columbia, Canada.

2. Methodology

2.1. Forward model for 3D magnetic anomalies
Susceptibility distribution in the sub-surface (x)
produces the magnetic field (T) at the surface. The
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purpose of the forward modeling is to compute
this field. The total component of the magnetic
field is given by [4]:

T=CV fR 7. V( %)dv (1)

where C_=1X 10" (Henry.meter™), R denotes

the volume occupied by the causative body, r is
the distance, and m is the magnetization vector

that can be obtained as follows:
M= xH + n_ir

)

where H is the earth's magnetic field and rﬁr is

remanent magnetization. If we ignore the
remanent component, the magnetization will be in
the direction of the earth's field, and can be
obtained simply as:

©)

To compute the total component of the magnetic
field in Eq. (1), it is required to discrete the
sub-surface under the survey area into rectangular
prisms of known sizes and positions with constant
susceptibilities. The formulation for computation
of magnetic response for each rectangular prism
was presented by Bhattacharyya (1964) [21] and
later simplified into a form that is more suitable
for fast computer implementation [22]. We used
the formulation developed by Rao and Babu
(1991) [22] to compute the magnetic response
resulting from individual prisms. If the observed
magnetic anomalies are caused by M subsurface
prisms, the magnetic field at the field point i is
given by:

m = xH

M
T,=>T.,i=12..N ()
7=1
where N is the number of observation point. The
forward model of magnetic data using Egs. (1)
and (4) can be written as the following matrix
equation:
T =G K

Nx1 — TNxM" Mx1

(%)

Here, G is the forward operator matrix that maps
the physical parameter’s space to the data space.
K denotes the vector of unknown model
parameters and T is the data vector that is given
by measurement data. There are some errors in the
measurement data due to noise that is usually
assumed to be uncorrelated, and have the
Gaussian distribution [18]. Thus:
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Gk‘ :dObs (6)

where d° =T +e is the vector of the

observed data and €, is the vector of the data

error. The main purpose of the magnetic inverse
problem is to find a geologically plausible
susceptibility model (¥ ) based on G and some

measured data (d ®) at the noise level.

2.2. Inversion method

In the typical minimum-structure inversion
procedure, the sub-surface of the survey area is
discrete into rectangular prisms (cells) of known
sizes and positions with the values of the physical
property (e.g. susceptibility) in the cells that are
called the model parameters to be estimated in the
inversion [1]. The solution can be obtained by
minimization of an objective function, which is a
combination of a measure of misfit between the
observation and predicted data and a measure of
complexity of the model subject to a physical
bound constraint [7]:

(I) = ¢(i + i¢/«; 7
st L<k<U (7)
where A is a regularization parameter, L is the
lower susceptibility bound, U is the upper
susceptibility bound, and the misfit functional is
defined as follows:

2
Ch ’Wd(GK —d™) )

(8)

2

Here, W, is the data weighting matrix given by

W, =diag(1/o,,...1/0,), wherec, stands for the
standard deviation of the noise in the ith datum,
and ¢_ is a stabilizing functional (stabilizer) that

measures the minimum norm of model structure
[7-9]:

¢, =« Qo WW, )k )
k

where a, is the coefficient that affects the relative

importance of derivative components in different

directions. Wk resembles the first-order

finite-difference matrices in the x, y, and z
directions. We have to use an additional depth
weighting matrix W _for compensating the natural
decay of the forward operator matrix with depth
[23]:
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W, =diag(G'G )% (10)

Now Eq. (9) can be reformulated to apply the
depth weighting matrix to the objective function.

2
6, =W, W], (11)
where Wm is the cumulative first-order
finite-difference  matrix. Eg. (7) can Dbe

reformulated easily using the matrix notation to
incorporate depth weighting:
o= oW Wk —d”

2 2
@
2 2

where G =W G and d™ =W d™ . Eq. (12) is
transformed into a space of weighted model
parameters K, by replacing the variables

k=W, 'k and G =GW, " [24]:

G K — aobs

w w

2=

2 2
, e,

m

(13)

The solution to Eq. (13) is obtained according to
the regularization theory similar to the classical
minimum norm optimization problem [25]. The
solution to the magnetic inverse problem can be
obtained by minimizing this equation using the
GN method. The upper (U) and lower (L)
susceptibility bounds can be imposed during the
inversion process to recover a more feasible
model. If an achieved susceptibility value falls
outside the bounds, the value in that cell is
projected back to the nearest upper or lower
susceptibility bound [12].

In order to solve Eq. (13) with the GN method,
assume the obtained solution denoted by k" at
the (n — 1)th iteration, and the predicted data
corresponding to this model is d™ V. Then at the
nth iteration, a model perturbation Akw can be

achieved by solving the following equation so that

the inverted model can be wupdated by
KE:) = KE:”” + Ak [26]:
GG, +A"y " wIw Ak, =
o~ ~ kK (14)
T (Aobs n—1 n T n—1
Gw (d - d( )) _/1( );Wk WkKEU )

where 1™ is the regularization parameter in the
nth iteration. Then the solution of the inverse
problem in Eq. (7),, is given by
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K(”) — K(nfl) 4 W/ZflAKw (15)

In order to recover a more feasible model of the
sub-surface, the upper (U) and lower (L) physical
bounds of susceptibility are imposed in each

iteration to forceL < x™ <U . If a given
susceptibility value falls outside the bounds, the
susceptibility value of that cell is projected back
to the nearest physical bound value.

The solution to Eq. (14) is also equivalent to the
least-squares solution of the following equation:

s GO U
i(n)Wz Ax, =|_ i(n)W‘LKé:z—w (16)
zWWZ Amw;gﬂ

The least-squares solution of Eq. (16) is obtained
by a fast iterative method such as conjugate
gradient (CG) [27] at each GN iteration.
Therefore, the proposed algorithm would be
suitable for the large-scale problems [18]. The GN
iterations stop when the RMS misfit reaches an
acceptable level or the model corrections become
small enough [11].

We used an adaptive method for choosing the
regularization parameter similar to what was
proposed by Farquharson (2008) [13], which is a
fast and efficient algorithm for choosing the
regularization parameter. The regularization

parameter is started at 100 (1" = 100), which is
a relatively large value. If an inversion is
performed with the regularization parameter fixed
at this value, a model would be produced that has
a small amount of structure and the predicted data
under-fits the observations. At each iteration, the
regularization parameter is damped to give a slow
but steady progression of models with increasing
structure and decreasing data misfits:

20 = 0gm =19 (17)

where 6 =0.5 based the

experiments.

on empirical
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3. Synthetic test

We applied our algorithm to two synthetic tests in
order to evaluate the reliability of the introduced
method. The first synthetic model consisted of
two different blocks with the dimension 200 m x
200 m x 200 m, which was embedded below the
surface so that the susceptibility of uniform
background was zero. The susceptibility of each
block was 0.06 (SI). The perspective view of the
true model is displayed in Figure 1a.

The depth to the top of the shallower block (block
(1)) was 50 m, and the depth above the top of the
deeper block (block (2)) was 100 m. The
total-field anomaly data was generated at the
surface assuming an inducing field with
inclination (1) of 75°, declination (D) of 257, and a
strength of 50000 nT. The data was generated
over a grid of 1000 m x 1000 m with a sample
spacing of 25 m. There was 1600 data, and 5%
Gaussian noise of the accurate datum magnitude
was added (Figure 1b). The sub-surface was
divided into 40 x 40 x 20 = 32000 rectangular
prisms with the same size of 25 m for inversion.
The inverse problem was solved using the
proposed method that was described in the
preceding section

(o, = o, = o, = 1). The solution was obtained

after five iterations with an RMS of 0.05.

Figure 2 shows a plan section and a cross-section
through the recovered model from proposed
inversion method. The result indicates an
acceptable smooth reconstruction of the synthetic
multi-source blocks at different depth levels
below the surface. The recovered bodies in the
model are smooth and adequately match the real
location of synthetic bodies.

The second synthetic model is more complicated
and consists of two 3D dipping slabs buried in a
zero susceptibility half-space (earth). The
susceptibility of both slabs was 0.06 (SI). The
perspective view of the true model is displayed in
Figure 3a.
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Figure 1. Perspective view of first synthetic model with two blocks (a). Magnetic anomaly was produced by first
synthetic model with 5% Gaussian noise of accurate datum magnitude.
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Figure 2. Plan sections through recovered susceptibility model obtained from 3D inversion of magnetic data
from first synthetic model at depth =-125 m (a). A cross-sectional slice of susceptibility model at Northing = 500
m (b). Borders indicate true position of each body.
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Figure 3. Perspective view of second synthetic model with two dipping slabs (a). Magnetic anomaly was produced
by second synthetic model with 5% Gaussian noise of accurate datum magnitude.

The depth to the top was 20 m for both dipping
slabs. Slab (1) elongated to 120 m below the
surface, and its thickness was 80 m in the east
direction. The second slab elongated 140 m below
the surface, and its thickness was 120 m in the
east direction. The length of both dipping slabs
was 160 m, which elongated in the north
direction. Under an inducing field of a strength of
48000 nT, inclination (I) of 45°, and declination
(D) of 45, the synthetic model produced 900
surface total magnetic data. 5% Gaussian noise of
the accurate datum magnitude was added to the
data (Figure 3b). The data was generated over a
grid of 600 m x 600 m with a sample spacing of
20 m.

The sub-surface was discretized into 30 x 30 x 15
= 13500 rectangular prisms with the same size of
20 m for inversion. The inverse problem was

solved using the proposed method
(o, =«

, = «, = 1). The solution was obtained

after 73 iterations with RMS of 0.05.

Figure 4 shows a plan section and a cross-section
through the recovered model from the proposed
inversion method. The anomalous bodies in the
model were smooth, and the tabular shape of the
slabs and their dipping structure were clear. The
depth extents of the slabs were reasonably
recovered. The susceptibility amplitude of the
recovered model was slightly lesser than the true
value at the lower corner of slabs in dipping
directions but the dip angles inferred from the
recovered model were close to the true value.
However, the result indicates acceptable smooth
reconstruction of the synthetic multi-source slabs
at different depth levels below the surface.
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g JRO.04 £ F0.04
@ - -
B o
1 003 1 0'03
|
0.01 0.01
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y 4 600
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Easting(m)
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Figure 4. Plan sections through recovered susceptibility model obtained from 3D inversion of magnetic data
form second synthetic model at depth =-60 m (a). A cross-sectional slice of susceptibility model at Northing =
300 m (b). Borders indicate true position of each slab.
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4. Inversion of field data

Mt. Milligan is a copper-gold porphyry deposit
situated in central British Columbia. The
geological information obtained from a major
drilling program show that the host rocks of the
deposit are Mesozoic volcanic and sedimentary
rocks, and contain intrusive monzonitic rocks that
have accessory magnetite. There is an intensive
hydrothermal alteration primarily in the region
beyond the boundaries of the monzonite stock.
The monzonite body is known as the MBX stock
[28]. Copper and gold are concentrated in the
potassic alteration zone, which is mainly around
the contact of the monzonite intrusions (MBX)
and may extend outward and into the fractured
volcanic rocks. However, magnetite is one of the
strong indicators of the potassic alteration. In this
region, the magnetic data is acquired at 12.5 m
spacing along lines in the east direction that
spaced 50 m apart [7]. We used the data at 25 m
spacing, which vyields 1920 data point. The
reduced magnetic anomaly map is shown in
Figure 5.

The direction of the inducing field is | = 75" and D
= 25.73" with a strength of 58193 nT. It is
assumed that each datum has an error whose
standard deviation is equal to 5% of its magnitude
[9].

In order to invert this data, the sub-surface of the
area was discretized into 48 x 40 x 18 = 34560

1000

cells, each of size 25 m. The positivity constraint
was imposed, which means that the lower (L)
physical bounds of susceptibility are set to 0 SI.
The solution is obtained after 112 iterations with
an RMS error of 0.05, which is about the
predicted noise of the data. The recovered model
is shown in Figure 6 as one plan-section and one
cross-section. The true edge of the MBX stock
and mineral assemblage, which were derived from
the drilling results overlaid on the cross-section of
the recovered susceptibility model (Figure 6b).
The results obtained indicate that the anomalous
bodies of magnetic susceptibility highs are mostly
associated with the monzonite intrusion (MBX or
black polygon in Figure 6b). There is a moderate
anomalous body at the center of the cross-section,
which is probably caused by the magnetite content
of potassic alteration. This area coincides with
mineral deposit (red-shaded polygon in Figure
6b). Thus the solution obtained is in a good
agreement with the true geologic boundaries of
Mt. Milligan deposit (Figure 6b).

The results obtained from the presented algorithm
are virtually similar with the ones obtained by Li
and Oldenburg (2003) [9]. Figure 7 shows a cross-
section through the model obtained by Li and
Oldenburg (2003) [9] at the northing of 600 m.
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Figure 5. Magnetic anomaly map of Mt. Milligan. Data is on 25 m x 25 m grid.
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Figure 6. Recovered susceptibility model shown in a plan-section at a depth of -80 m (a). A cross-section at

northing of 600 m overlaid by true boundary of monzonite body (MBX) with black line and mineral deposit with
red-shaded polygon (b).
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Figure 7. A cross-section through model obtained by Li and Oldenburg (2003) [9] at northing of 600 m overlaid
by true boundary of monzonite body (MBX) with black line and mineral deposit with red-shaded polygon (after
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5. Conclusions

We developed a new algorithm for inversion of
magnetic data using the Gauss Newton method. In
each GN iteration, the CG method is used for
solving the least-square problem. Therefore, the
proposed algorithm is efficient for large-scale
problems. We used an adaptive regularization
method for choosing the regularization parameter
in each iteration, which is a fast and effective
method for choosing the regularization parameter.
In the new algorithm, the physical bound
constraint can be imposed during the inversion
process via penalization function, which does not
require any transformation. Consequently, this
method of imposing bound constraint is more
efficient.

The results obtained show that the new developed
3D inversion method can produce a smooth
solution, which defines the shape and extent of
synthetic bodies adequately. Furthermore, this
inversion algorithm has been applied for inversion
of a field magnetic data from Mt. Milligan
deposit. It produced a model that is consistent
with the available geological information of the
deposit.

Compression  methods such as  wavelet
compression that can compress the kernel matrix
and using parallel programming that decrease the
required memory and computation time will be
the subject for future works for large-scale
problems.
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