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Abstract 

Inversion of magnetic data is an important step towards interpretation of the practical data. Smooth inversion 

is a common technique for the inversion of data. Physical bound constraint can improve the solution to the 

magnetic inverse problem. However, how to introduce the bound constraint into the inversion procedure is 

important. Imposing bound constraint makes the magnetic data inversion a non-linear inverse problem. In 

this work, a new algorithm is developed for the 3D inversion of magnetic data, which uses an efficient 

penalization function for imposing the bound constraint and Gauss Newton method to achieve the solution. 

An adaptive regularization method is used in order to choose the regularization parameter in this inversion 

approach. The inversion results of synthetic data show that the new method can produce models that 

adequately match the real location and shape of the synthetic bodies. The test carried out on the field data 

from Mt. Milligan copper-gold porphyry deposit shows that the new inversion approach can produce the 

magnetic susceptibility models consistent with the true structures. 
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1. Introduction 

Magnetic surveys can provide useful information 

on the Earth’s interior. Magnetic measurements 

are usually used to delineate magnetic anomalous 

bodies, and indicate their locations and depths. 

One of the most important topics in the 

quantitative interpretation of the potential field 

data is the inversion of practical data [1]. 

Inversion can be defined as a mathematical 

procedure that constructs a sub-surface property 

(susceptibility) model using the measured 

(magnetic) data by incorporating a-priori 

information as available. The recovered models 

must predict the measured data adequately [2]. 3D 

inversion of potential field data such as magnetic 

data is generally difficult [3]. The main difficulty 

is the non-uniqueness of the solution in magnetic 

inverse problem. There is infinite equivalent 

source distributions that produce the same 

measured magnetic data set [4]. In order to 

overcome this issue, the standard approach is to 

apply a-priori information. Several approaches 

have been introduced for incorporating priori 

information into the inversion process [5-15]. 

Last and Kubik (1983) [5] have developed the 

compact inversion method, which produces a 

compact and structurally simple model. Guillen 

and Menichetti (1984) [16] have minimized the 

moment of inertia of the body with respect to the 

center within the body or along the single axis 

passing through it. Barbosa and Silva (1994) [6] 

have generalized the moment of inertia functional 

to impose compactness along several axes. Li and 

Oldenburg (1996, 1998) [7, 8] have developed a 

model objective function that produces smooth 

models. This method can locate anomaly sources 

accurately. Nevertheless, the values for the 

recovered model are smaller than the true values 

due to the smoothness effect of the objective 

function. Portniaguine and Zhdanov (1999) [12] 

have developed a focusing inversion method 

based upon the compact inversion method for 

potential field data. Barbosa and Silva (2006) [17] 

have developed an interactive method for 
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inverting the magnetic data with interfering 

anomalies produced by multiple, complex, and 

closely separated geologic sources. Farquharson 

(2008) [13] has used the L1 measure of Li and 

Oldenburg’s model objective function to recover 

dipping structures and models, which have angled 

interfaces. Lelievre et al. (2009) [14] have used 

the Li and Oldenburg’s (1996, 1998) [7, 8] model 

objective function and developed advanced 

constrained inversion by geologic information. 

Zhang et al. (2015) [15] have improved the Li and 

Oldenburg’s method by applying Lagrangian 

multipliers in the model objective function to add 

geological constraints. In the 3D inversion of 

potential field data, particular bounds of the 

physical property may be known. This physical 

bound constraint can improve the solution and 

make it more feasible [18]. Consequently, how to 

introduce the bound constraint into the inversion 

procedure becomes an important issue. 

Portniaguine and Zhdanov (1999, 2002) [12, 19] 

have used a penalization algorithm to impose 

bound constraint in focusing inversion of potential 

field data. Li and Oldenburg (2003) [9] have 

chosen a logarithmic barrier method incorporating 

bound constraint on the recovered smooth model. 

Zhang et al. (2015) [15] have imposed bound 

constraint in smooth inversion of potential field 

data via a method using the Lagrangian 

multipliers. However, imposing bound constraint 

makes the magnetic data inversion a non-linear 

inverse problem. Therefore, the logarithmic 

barrier and Lagrangian multiplier’s methods 

increase the computation time. Another issue 

involved in solving the non-linear inverse 

problems is choosing the regularization parameter 

that can increase the computation time [20]. 

In this work, we developed a new 3D magnetic 

data inversion method based upon the Gauss-

Newton (GN) algorithm that can incorporate 

bound constraint on the recovered model using 

penalization algorithm introduced by Portniaguine 

and Zhdanov (1999, 2002) [12, 19]. Furthermore, 

we used an adaptive regularization method for 

regularization parameter selection in our magnetic 

data inversion method. Finally, the capabilities of 

the proposed method were illustrated by its 

application to the inversion of a synthetic data set 

and to the 3D inversion of magnetic data from the 

Mt. Milligan deposit at British Columbia, Canada. 

2. Methodology 

2.1. Forward model for 3D magnetic anomalies 

Susceptibility distribution in the sub-surface ( κ ) 

produces the magnetic field (T) at the surface. The 

purpose of the forward modeling is to compute 

this field. The total component of the magnetic 

field is given by [4]: 

m
R

1
T = -C m. ( )dv

r
 (1) 

where 
71 10

m
C  (Henry.meter

-1
), R denotes 

the volume occupied by the causative body, r  is 

the distance, and m  is the magnetization vector 

that can be obtained as follows: 

r
m = κH + m  (2) 

where H  is the earth's magnetic field and 
r

m  is 

remanent magnetization. If we ignore the 

remanent component, the magnetization will be in 

the direction of the earth's field, and can be 

obtained simply as: 

m = κH  (3) 

To compute the total component of the magnetic 

field in Eq. (1), it is required to discrete the  

sub-surface under the survey area into rectangular 

prisms of known sizes and positions with constant 

susceptibilities. The formulation for computation 

of magnetic response for each rectangular prism 

was presented by Bhattacharyya (1964) [21] and 

later simplified into a form that is more suitable 

for fast computer implementation [22]. We used 

the formulation developed by Rao and Babu 

(1991) [22] to compute the magnetic response 

resulting from individual prisms. If the observed 

magnetic anomalies are caused by M subsurface 

prisms, the magnetic field at the field point i is 

given by: 

,
1

, 1,2, ,
i i j

j

i
M

T T N  (4) 

where N is the number of observation point. The 

forward model of magnetic data using Eqs. (1) 

and (4) can be written as the following matrix 

equation: 

N ×1 N ×M M ×1
GT κ  (5) 

Here, G is the forward operator matrix that maps 

the physical parameter’s space to the data space. 
κ  denotes the vector of unknown model 

parameters and T is the data vector that is given 

by measurement data. There are some errors in the 

measurement data due to noise that is usually 

assumed to be uncorrelated, and have the 

Gaussian distribution [18]. Thus: 
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 obsGκ d  (6) 

where obs = d T e  is the vector of the 

observed data and 
N ×1

e is the vector of the data 

error. The main purpose of the magnetic inverse 

problem is to find a geologically plausible 

susceptibility model (κ ) based on G and some 

measured data ( obs
d ) at the noise level. 

2.2. Inversion method 

In the typical minimum-structure inversion 

procedure, the sub-surface of the survey area is 

discrete into rectangular prisms (cells) of known 

sizes and positions with the values of the physical 

property (e.g. susceptibility) in the cells that are 

called the model parameters to be estimated in the 

inversion [1]. The solution can be obtained by 

minimization of an objective function, which is a 

combination of a measure of misfit between the 

observation and predicted data and a measure of 

complexity of the model subject to a physical 

bound constraint [7]: 

.
d

s t L U

= λ

κ
 (7) 

where λ  is a regularization parameter, L is the 

lower susceptibility bound, U is the upper 

susceptibility bound, and the misfit functional is 

defined as follows: 

2

2
( )obs

d d
W Gκ d  (8) 

Here, 
d

W  is the data weighting matrix given by 

d i m
W diag 1 / σ ,…,1 / σ( ) , where

i
σ stands for the 

standard deviation of the noise in the ith datum, 

and  is a stabilizing functional (stabilizer) that 

measures the minimum norm of model structure 

[7-9]: 

( )T TW W
k k k

k

κ κ  (9) 

where 
k

is the coefficient that affects the relative 

importance of derivative components in different 

directions. W
k
 resembles the first-order  

finite-difference matrices in the x, y, and z 

directions. We have to use an additional depth 

weighting matrix 
z

W for compensating the natural 

decay of the forward operator matrix with depth 

[23]: 


z

W diag G G
1

T 4( )  (10) 

Now Eq. (9) can be reformulated to apply the 

depth weighting matrix to the objective function. 

2

2m z
WW κ  (11) 

where W
m

is the cumulative first-order  

finite-difference matrix. Eq. (7) can be 

reformulated easily using the matrix notation to 

incorporate depth weighting: 

2 21

22

obs
z z m z

WW= GW W λκ d κ  (12) 

where G =W G
d

 and d d
obs obs

d
=W . Eq. (12) is 

transformed into a space of weighted model 

parameters κ
w

 by replacing the variables 

κ κ
z

W 1

w
 and 

1

z
G GW
w

 [24]: 

2 2

22w w m w
Wobs= G λκ d κ  (13) 

The solution to Eq. (13) is obtained according to 

the regularization theory similar to the classical 

minimum norm optimization problem [25]. The 

solution to the magnetic inverse problem can be 

obtained by minimizing this equation using the 

GN method. The upper (U) and lower (L) 

susceptibility bounds can be imposed during the 

inversion process to recover a more feasible 

model. If an achieved susceptibility value falls 

outside the bounds, the value in that cell is 

projected back to the nearest upper or lower 

susceptibility bound [12]. 

In order to solve Eq. (13) with the GN method, 

assume the obtained solution denoted by 
( 1)
w

n
κ  at 

the (n − 1)th iteration, and the predicted data 

corresponding to this model is 
( 1)n

d . Then at the 

nth iteration, a model perturbation 
w
κ  can be 

achieved by solving the following equation so that 

the inverted model can be updated by 
( ) ( 1)n n
w w w
κ κ κ [26]: 

( )

( 1) ( ) ( 1)

( )

)

nT T
w w k k w

k
n n nT obs T

w k k w
k

G G λ W W

G λ W W

κ

(d d κ
 (14) 

where 
( )nλ  is the regularization parameter in the 

nth iteration. Then the solution of the inverse 

problem in Eq. (7),κ , is given by 
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( ) ( 1) 1n n
z w
Wκ κ κ  (15) 

In order to recover a more feasible model of the 

sub-surface, the upper (U) and lower (L) physical 

bounds of susceptibility are imposed in each 

iteration to force ( )nL Uκ . If a given 

susceptibility value falls outside the bounds, the 

susceptibility value of that cell is projected back 

to the nearest physical bound value. 

The solution to Eq. (14) is also equivalent to the 

least-squares solution of the following equation: 

( 1)

( ) ( ) ( 1)

( ) ( ) ( 1)

( ) ( ) ( 1)

nobs
w

n n n
x x w

wn n n
y y w

n n n
z z w

G

λ W λ W

λ W λ W

λ W λ W

d d

κ
κ

κ

κ

 (16) 

The least-squares solution of Eq. (16) is obtained 

by a fast iterative method such as conjugate 

gradient (CG) [27] at each GN iteration. 

Therefore, the proposed algorithm would be 

suitable for the large-scale problems [18]. The GN 

iterations stop when the RMS misfit reaches an 

acceptable level or the model corrections become 

small enough [11]. 

We used an adaptive method for choosing the 

regularization parameter similar to what was 

proposed by Farquharson (2008) [13], which is a 

fast and efficient algorithm for choosing the 

regularization parameter. The regularization 

parameter is started at 100 (
(1) 100λ ), which is 

a relatively large value. If an inversion is 

performed with the regularization parameter fixed 

at this value, a model would be produced that has 

a small amount of structure and the predicted data 

under-fits the observations. At each iteration, the 

regularization parameter is damped to give a slow 

but steady progression of models with increasing 

structure and decreasing data misfits: 

( ) (1) 1 1,2,n n nλ λ ,    (17) 

where 0.5  based on the empirical 

experiments. 

3. Synthetic test 

We applied our algorithm to two synthetic tests in 

order to evaluate the reliability of the introduced 

method. The first synthetic model consisted of 

two different blocks with the dimension 200 m × 

200 m × 200 m, which was embedded below the 

surface so that the susceptibility of uniform 

background was zero. The susceptibility of each 

block was 0.06 (SI). The perspective view of the 

true model is displayed in Figure 1a. 

The depth to the top of the shallower block (block 

(1)) was 50 m, and the depth above the top of the 

deeper block (block (2)) was 100 m. The  

total-field anomaly data was generated at the 

surface assuming an inducing field with 

inclination (I) of 75
◦
, declination (D) of 25

◦
, and a 

strength of 50000 nT. The data was generated 

over a grid of 1000 m × 1000 m with a sample 

spacing of 25 m. There was 1600 data, and 5% 

Gaussian noise of the accurate datum magnitude 

was added (Figure 1b). The sub-surface was 

divided into 40 × 40 × 20 = 32000 rectangular 

prisms with the same size of 25 m for inversion. 

The inverse problem was solved using the 

proposed method that was described in the 

preceding section  

(
1 2 3

1 ). The solution was obtained 

after five iterations with an RMS of 0.05. 

Figure 2 shows a plan section and a cross-section 

through the recovered model from proposed 

inversion method. The result indicates an 

acceptable smooth reconstruction of the synthetic 

multi-source blocks at different depth levels 

below the surface. The recovered bodies in the 

model are smooth and adequately match the real 

location of synthetic bodies. 

The second synthetic model is more complicated 

and consists of two 3D dipping slabs buried in a 

zero susceptibility half-space (earth). The 

susceptibility of both slabs was 0.06 (SI). The 

perspective view of the true model is displayed in 

Figure 3a. 
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Figure 1. Perspective view of first synthetic model with two blocks (a). Magnetic anomaly was produced by first 

synthetic model with 5% Gaussian noise of accurate datum magnitude. 
 

 
Figure 2. Plan sections through recovered susceptibility model obtained from 3D inversion of magnetic data 

from first synthetic model at depth = -125 m (a). A cross-sectional slice of susceptibility model at Northing = 500 

m (b). Borders indicate true position of each body. 
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Figure 3. Perspective view of second synthetic model with two dipping slabs (a). Magnetic anomaly was produced 

by second synthetic model with 5% Gaussian noise of accurate datum magnitude. 

 
The depth to the top was 20 m for both dipping 

slabs. Slab (1) elongated to 120 m below the 

surface, and its thickness was 80 m in the east 

direction. The second slab elongated 140 m below 

the surface, and its thickness was 120 m in the 

east direction. The length of both dipping slabs 

was 160 m, which elongated in the north 

direction. Under an inducing field of a strength of 

48000 nT, inclination (I) of 45
◦
, and declination 

(D) of 45
◦
, the synthetic model produced 900 

surface total magnetic data. 5% Gaussian noise of 

the accurate datum magnitude was added to the 

data (Figure 3b). The data was generated over a 

grid of 600 m × 600 m with a sample spacing of 

20 m. 

The sub-surface was discretized into 30 × 30 × 15 

= 13500 rectangular prisms with the same size of 

20 m for inversion. The inverse problem was 

solved using the proposed method  

(
1 2 3

1). The solution was obtained 

after 73 iterations with RMS of 0.05. 

Figure 4 shows a plan section and a cross-section 

through the recovered model from the proposed 

inversion method. The anomalous bodies in the 

model were smooth, and the tabular shape of the 

slabs and their dipping structure were clear. The 

depth extents of the slabs were reasonably 

recovered. The susceptibility amplitude of the 

recovered model was slightly lesser than the true 

value at the lower corner of slabs in dipping 

directions but the dip angles inferred from the 

recovered model were close to the true value. 

However, the result indicates acceptable smooth 

reconstruction of the synthetic multi-source slabs 

at different depth levels below the surface. 

 

 
Figure 4. Plan sections through recovered susceptibility model obtained from 3D inversion of magnetic data 

form second synthetic model at depth = -60 m (a). A cross-sectional slice of susceptibility model at Northing = 

300 m (b). Borders indicate true position of each slab. 
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4. Inversion of field data 

Mt. Milligan is a copper-gold porphyry deposit 

situated in central British Columbia. The 

geological information obtained from a major 

drilling program show that the host rocks of the 

deposit are Mesozoic volcanic and sedimentary 

rocks, and contain intrusive monzonitic rocks that 

have accessory magnetite. There is an intensive 

hydrothermal alteration primarily in the region 

beyond the boundaries of the monzonite stock. 

The monzonite body is known as the MBX stock 

[28]. Copper and gold are concentrated in the 

potassic alteration zone, which is mainly around 

the contact of the monzonite intrusions (MBX) 

and may extend outward and into the fractured 

volcanic rocks. However, magnetite is one of the 

strong indicators of the potassic alteration. In this 

region, the magnetic data is acquired at 12.5 m 

spacing along lines in the east direction that 

spaced 50 m apart [7]. We used the data at 25 m 

spacing, which yields 1920 data point. The 

reduced magnetic anomaly map is shown in 

Figure 5. 

The direction of the inducing field is I = 75
◦
 and D 

= 25.73
◦
 with a strength of 58193 nT. It is 

assumed that each datum has an error whose 

standard deviation is equal to 5% of its magnitude 

[9]. 

In order to invert this data, the sub-surface of the 

area was discretized into 48 × 40 × 18 = 34560 

cells, each of size 25 m. The positivity constraint 

was imposed, which means that the lower (L) 

physical bounds of susceptibility are set to 0 SI. 

The solution is obtained after 112 iterations with 

an RMS error of 0.05, which is about the 

predicted noise of the data. The recovered model 

is shown in Figure 6 as one plan-section and one 

cross-section. The true edge of the MBX stock 

and mineral assemblage, which were derived from 

the drilling results overlaid on the cross-section of 

the recovered susceptibility model (Figure 6b). 

The results obtained indicate that the anomalous 

bodies of magnetic susceptibility highs are mostly 

associated with the monzonite intrusion (MBX or 

black polygon in Figure 6b). There is a moderate 

anomalous body at the center of the cross-section, 

which is probably caused by the magnetite content 

of potassic alteration. This area coincides with 

mineral deposit (red-shaded polygon in Figure 

6b). Thus the solution obtained is in a good 

agreement with the true geologic boundaries of 

Mt. Milligan deposit (Figure 6b). 

The results obtained from the presented algorithm 

are virtually similar with the ones obtained by Li 

and Oldenburg (2003) [9]. Figure 7 shows a cross-

section through the model obtained by Li and 

Oldenburg (2003) [9] at the northing of 600 m. 

 

 
Figure 5. Magnetic anomaly map of Mt. Milligan. Data is on 25 m × 25 m grid. 
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Figure 6. Recovered susceptibility model shown in a plan-section at a depth of -80 m (a). A cross-section at 

northing of 600 m overlaid by true boundary of monzonite body (MBX) with black line and mineral deposit with 

red-shaded polygon (b). 
 

 
Figure 7. A cross-section through model obtained by Li and Oldenburg (2003) [9] at northing of 600 m overlaid 

by true boundary of monzonite body (MBX) with black line and mineral deposit with red-shaded polygon (after 

[9]). 
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5. Conclusions 

We developed a new algorithm for inversion of 

magnetic data using the Gauss Newton method. In 

each GN iteration, the CG method is used for 

solving the least-square problem. Therefore, the 

proposed algorithm is efficient for large-scale 

problems. We used an adaptive regularization 

method for choosing the regularization parameter 

in each iteration, which is a fast and effective 

method for choosing the regularization parameter. 

In the new algorithm, the physical bound 

constraint can be imposed during the inversion 

process via penalization function, which does not 

require any transformation. Consequently, this 

method of imposing bound constraint is more 

efficient. 

The results obtained show that the new developed 

3D inversion method can produce a smooth 

solution, which defines the shape and extent of 

synthetic bodies adequately. Furthermore, this 

inversion algorithm has been applied for inversion 

of a field magnetic data from Mt. Milligan 

deposit. It produced a model that is consistent 

with the available geological information of the 

deposit. 

Compression methods such as wavelet 

compression that can compress the kernel matrix 

and using parallel programming that decrease the 

required memory and computation time will be 

the subject for future works for large-scale 

problems. 
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 چکیده:

هنا. اعمنال   سازی وارون اینن داده سازی وارون هموار، روشی است رایج برای مدلها. مدلمغناطیس گامی است مهم برای تفسیر این دادههای سازی وارون دادهمدل

قیند  سنازی وارون مهنم اسنت. اعمنال     تواند جواب مسئله وارون مغناطیس را بهبود ببخشد. به هر حال نحوه اعمال قید کران در فرآیند مندل قید کران فیزیکی می

بعندی   ی سنه سناز  مندل کند. در این پژوهش، الگوریتم جدیدی بنرای  ی تبدیل میرخطیغهای مغناطیس را به یک مسئله وارون سازی وارون دادهکران مسئله مدل

گوس نینوتن بنرای رسنیدن بنه      که در آن از یک تابع مجازات کارا برای اعمال قید کران به کار گرفته شده است و از روش شودهای مغناطیس توسعه داده میداده

سنازی  کنار گرفتنه شنده اسنت. مندل      سازی بنه سازی تطبیقی برای انتخاب پارامتر منظمسازی وارون، یک روش منظمجواب استفاده شده است. در این روش مدل

مصنوعی را به خوبی مشخص کند. آزمایش انجام  های موجود در مدلتواند شکل و محل واقعی تودهدهد که این روش جدید میهای مصنوعی نشان میوارون داده

هنایی بنرای توزینع    توانند مندل  سنازی وارون منی  دهد که روش جدیند مندل  طلای پرفیری کوه میلیگان نشان می -های میدانی ذخیره مسشده با استفاده از داده

 .با ساختارهای واقعی زمین همخوانی دارد کهای خودپذیری مغناطیسی تهیه کندد به گونه

 سازی.سازی وارون، قید کران فیزیکی، گوس نیوتن، منظمهای مغناطیس، مدلداده کلمات کلیدی:

 

 


