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Abstract

In underground excavation, where the road-headers are employed, a precise prediction of the road-header
performance has a vital role in the economy of the project. In this paper, a new model is developed for
prediction of the road-header performance using the non-linear multivariate regression analysis. This model
is able to estimate the instantaneous cutting rate (ICR) of roadheader based on rock properties such as
Brazilian tensile strength (BTS), rock mass cuttability index (RMCI), and alpha angle (a: is the angle
between the tunnel axis and the planes of weakness). In order to construct and test the proposed model, a
database including 62 cutting cases is used in the Tabas coal mine No. 1 in Iran. Various statistical
performance indices were employed to evaluate the model efficiency. The results obtained indicate that the
proposed non-linear regression model can be efficiently used to predict the road-header cutting performance.
Furthermore, the prediction capacity of this model is better than the empirical models developed previously.
Finally, it should be noted that the developed model is site-specific, and it can be used for preliminary
estimation of ICR in future phases of Tabas coal mine No. 1. The outcome of this model can be helpful in
adjustment of time-scheduling of the project.

Keywords: Road-Header Machine, Instantaneous Cutting Rate, Non-Linear Multivariable Regression
Analysis, Rock Properties, Tabas Coal Mine.

1. Introduction

Road-headers are one of the most popular
mechanized excavators used in mining and civil
underground excavations. Road-headers were first
developed in Europe for the mechanical
excavation of coal in the late 1940s [1, 2]. They
are partial face machines excavating only a
portion of the face at once. The basic advantages
of road-headers over the other underground
excavation machines are their mobility, flexibility,
and selective mining ability.

The successful application of road-headers is
directly related to an accurate estimation of
performance, which is critical for the project
schedule and costs. Error in the performance

estimation can result in project delays and cost
over runs, as seen in many case histories.
Performance prediction generally includes the
assessment of instantaneous (net) cutting rate
(ICR). ICR is defined as the production rate
during a continuous excavation phase in m*/h. An
overview of the relevant literatures reveals that
various parameters can affect the road-header
performance. These parameters can be divided
into three general groups: mechanical,
geological-geotechnical, and technical-operational
parameters [2]. A summary of these parameters is
presented in Table 1.
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Table 1. Main parameters influencing road-header performance [2].

e Machine weight and dimensions

e Cutter-head type (transverse, axial)
e Cutter-head power and RPM, lacing design

Mechanical
parameters

e Machine type (crawler mounted, shielded, twin boom, etc.)

e Boom force capacities (shearing, lifting, and lowering).

e Bit type and dimensions, metallurgical properties of tip

Rock Mass Properties

e RQD

e Bedding, foliation, and fault zones

e Joint sets (orientation, spacing, filling, etc.)
e Hydrogeology (water table/water ingress)

Geological-geotechnical
parameters

e Adverse geology (squeezing, swelling, and blocky grounds)
Physical and Mechanical (Intact Rock) Properties
e Cuttability (cutter forces, SE, and optimum cutting geometry: linear cutting tests)

e Strength (UCS, BTS, elasticity modulus, cohesion, etc.)

e Texture and abrasivity (mineral/quartz content and grain size, micro-fractures, grain interlocking, etc.)
e Others (brittleness, water content, swelling, etc.)

Technical Parameters

e Tunnel shape and dimensions

e Inclinations, crosscuts

Mining Parameters

e Support (bolting, shotcrete, steel sets, etc.)

Technical-operational
parameters

e Labor availability and quality

e Muck haulage (conveyor, locomotive, LHD, etc.)
e Utility lines (power, water, and air supply) and surveying
e Ground treatment (drainage, grouting, and freezing)

In the past years, many road-header performance
prediction models have been reported in the
literature using a combination of parameters.
These performance prediction models can be
generally classified as the theoretical and
empirical models [3]. Theoretical models are
based upon full-scale and small-scale linear
cutting tests. These models estimate ICR using the
specific energy required to excavate a unit volume
of rock. The pioneering works in estimating the
performance of road-headers from specific energy
was carried out by McFeat-Smith and Fowell [4,
5], Fowell and Johnson [6], Farmer and Garrity
[7], Poole [8], and Fowell et al. [9]. One of the
most accepted theoretical methods was suggested
by Rostami et al. [10] based upon full-scale
cutting tests, as shown in the following equation:
ICR =k -——
SE

opt

(1)

where ICR is the instantaneous cutting rate in
m’/h, P is the installed cutter-head power in kW,
SE,,: 1s the optimum specific energy in KWh/m’,
and k is the mechanical efficiency rate, which is
between 0.45 and 0.55 for road-headers, without
mentioning the type of road-header cutter head.
Investigation of the literature indicated that SE
obtained from full-scale linear cutting tests in
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optimum cutting conditions was highly correlated
to mechanical properties of the rocks [11-14].
Empirical performance prediction models are
mainly based on the past experience and the
statistical interpretation of previously recorded
case histories. Therefore, the collection of field
data is very important for the development of
empirical models. The accuracy and reliability of
these models depend on the quality and extent of
the available data. Some of the most widely used
empirical models for road-headers are
summarized in Table 2.

As it can be seen, the literature contains a
considerable number of empirical prediction
models obtained from the conventional statistical
techniques. In the recent years, the soft computing
techniques have been successfully employed for
developing prediction models. These techniques
have attracted much attention in a lot of research
fields, and they are now being used as an
alternative statistical tools. Recently,
Yazdani-Chamzini et al. [20], Salsani et al. [21],
Avunduk et al. [3], and Ebrahimabadi et al. [22]
have applied the soft computing techniques
(artificial neural network and fuzzy inference
system) for the road-header performance
prediction. The main disadvantage of the soft
computing techniques is that most of them are
“black box”, meaning that they are not able to
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clearly indicate the relationship between the input
and output parameters.

The current work aims to predict the road-header
performance based on a transparent model. Thus a
new model was developed using a non-linear
multivariate  regression analysis for ICR
prediction. For this purpose, a database compiled
from Tabas coal mine No. 1 was used, and the

model was developed based on major rock
properties such as Brazilian tensile strength
(BTS), rock mass cuttability index (RMCI), and
alpha angle (). The method of developing the
regression model and also the description of
database are presented in the following sections.

Table 2. Common empirical prediction models for road-header performance.

Author Model

Explanations

ICR =719 0.78
Gehring [15] Jucs

Based on performance of a road-header
with a 250 kW transverse type cutter-
head.

ICR = 173%CS 1.13

Based on performance of a road-header
with a 230 kW axial type cutter-head.

ICR =0.28- P -(0.974)*"

Bilgin et al. [16]

RMCI =UCS -(RQ’% 00)%

Based on in situ observation of many
tunneling and mining projects.

Thuro and Plinninger [17]

ICR =75.7-143-In(UCS))

Based on performance of a 132 kW
transverse type road-header.

Copur et al. [18] RPI =(P-W)/UCS

ICR =27.511-exp(0.0023- RPI )

Based on performance of transverse road-
headers in different power and weight
classes for excavation of especially
evaporitic rocks (non-abrasive).

—k.|P
[CR=k [%0.371]650“)}

Based on performance of transverse road-
headers in different power and weight
classes and different types of rocks.

Balci et al. [12]

k| P
ICk =k [%0.41~UCS°'67)}

Based on performance of axial road-
headers in different power and weight
classes and different types of rocks.

ICR =30.75-RMBI **
—YShrs) (ROD ’
RMBI =e¢ % 00

Ebrahimabadi et al. [19]

Based on performance of a light-weight
axial road-header and coal measure strata
(Tabas coal mine).

ICR: instantaneous cutting rate (m’/h).

P: installed cutter-head power (HP in Bilgin et al. model and kW in other models).

W: weight of road-header (tons).

k: energy transfer ratio (0.5 for axial and transverse road-headers).

UCS: uniaxial compressive strength (MPa).
BTS: Brazilian tensile strength (MPa).
RQD: rock quality designation (%).

RMCI: rock mass cuttability index (MPa).
RPI: road-header penetration index.

RMBI: rock mass brittleness index.

2. Mine description and database

Tabas coal mine No. 1 is the case studied here.
This mine is located in a desert area
approximately 85 km south of Tabas town in
Yazd province in the mid-eastern part of Iran.
There are five coal seams in Tabas coalfield
including B, B,, C;, C,, and D. C; is the most
suitable seam for mechanized mining due to the
least variation in thickness. In mine No. 1, the C,
seam is extracted using the mechanized long-wall
retreat mining method (Figure 1). The thickness
and dip of C; seam vary from 1.8 to 2 m and from
11 to 26°, respectively. Low strength sandstone
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and siltstone strata constitute the hanging wall of
the coal seam. The footwall consists of siltstone
and mudstone strata, alternately [23]. In mine No.
1, four road-header machines, DOSCO MD1100
axial (milling) type, are used to excavate entries
and drifts. DOSCO MD1100 road-header, which
is classified in the range of light-duty machines, is
considered as an ideal machine for excavating
mixed strata. The strength of rock formations to
be excavated by road-headers in Tabas coal mine
is low-to-medium including siltstone, mudstone,
and coal. The basic specifications of this machine
are summarized in Table 3.
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Figure 1. Layout of Taba

s coal m

ine No. 1 [23].

Table 3. Main specifications of DOSCO MD1100 road-header.

General

Total weight 34 tons
Length of machine 8.16 m

Width of machine 25m
Height of machine 1.86 m

Width over apron 3m
Machine ground pressure 0.14 MPa
Cutting profile

Cutting height max. 4378 m
Cutting width max. 6.16 m
Undercut below floor level 188 mm

Conveying system

Type of conveyor

Centre strand scraper

Width of conveyor 600 mm
Velocity of conveyor 1.18 m/s
Negotiable gradients
Max. incline/decline 16 degrees
Max. cross gradient 8 degrees
Speeds
Speed of cutter-head 2.54 m/s

Tracking speed

0.038 t0 0.12 m/s

Electrical system

Cutter motor
Total installed power

82 kW (axial)
157 kW

For the purpose of this work, the database
compiled by Ebrahimabadi et al. [24] was used.
Ebrahimabadi [25] has  performed a
comprehensive study on the entries and drifts of
mine No. 1 to establish a database for evaluating
the performance of road-header machines. He
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gathered detailed data including machine
performance and geo-mechanical parameters for
62 cutting cases in tunnels and entries. Table 4
presents a summary of the original database. The
database contains intact rock properties including
uniaxial compressive strength (UCS), Brazilian
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tensile strength (BTS), and also rock mass
properties including the rock mass -cuttability
index (RMCI) and the alpha angle () [the angle
between tunnel axis and the planes of weakness]
together with the actual measured instantaneous
cutting rate (ICR). ICR was calculated based on
the cutting volume and cutting duration recorded
for each cutting case under highly controlled
conditions. In each cutting case, UCS and BTS
were measured in the laboratory according to the
ASTM standards [26, 27]. RMCI and a were
computed using Eqgs. (2) and (3), respectively [16,
28]. In these equations, @rand «; are dip and strike
of encountered planes of weakness in rock mass,

respectively, and «; is the direction of the tunnel
axis, all in degrees.

RMCI =UCS - (RQD% 00)% 2)
o= arcsin(sin a, -sin (e, —a, )) )

As it can be seen in Eq. (2), calculating RMCI
requires the rock quality designation (RQD)
index. Generally, RQD is determined based on
drill cores, and in this work, its value ranged from
18 to 28 [24].

Table 4. Summary of original database.

Type of data Parameter (unit) Min. Mean Max. Std. dev.
UCS (MPa) 14.10 19.61 28.20 5.48
Inputs BTS (MPa) 360 4.08 530 0.30
RMCI 4.62 6.65 11.64 1.93
a (deg.) 39.00 47.13  54.00 4.84
Output ICR (m’/hr) 14.60 28.75 46.20 10.24

Total number of data points is 62.

3. Development of non-linear regression model
As it can be seen in Table 4, the Tabas database
contains four input parameters but to develop the
predictive model of ICR, only three parameters
(i.e. BTS, RMCI, and o) were considered as the
predictor variables. UCS was excluded from the
input parameters because it was considered in the
RMCI calculation indirectly (Eq. 2).

At first, a series of simple regression analyses
were carried out in order to identify the
relationship between the predictor variables and
the dependent variable. It should be mentioned
that all the statistical analyses were done using the

SPSS software [29]. The relationship between
ICR and the predictor variables was analyzed
using the linear, logarithmic, power, exponential,
and quadratic functions. A summary of the results
obtained can be seen in Table 5.

The statistically significant and strong correlations
were then selected, and the regression equation
was established among the index parameters with
the ICR (Table 6). As it can be seen in Table 6,
the strongest relationship between BTS and RMCI
with ICR was quadratic, whereas this relationship
for sin (o) was exponential. Figure 2 shows the
plots of ICR versus BTS, RMCI, and sin (o).

Table 5. Determination coefficient (R?) obtained from simple regression between ICR and predictor variables.

BTS (MPa) RMCI (MPa)

Linear 0.508
Logarithmic 0.517
Quadratic 0.527
Power 0.476
Exponential 0.466

sin ()
0.899 0.380
0911 0.374
0.914 0.403
0.851 0.453
0.829 0.457

Table 6. Predictive models for assessing ICR.

Prediction model R?
ICR vs. BTS ICR =—-8.590BTS? +96.893BTS —222.850 0.527
ICR vs. RMCI  JCR =—0.466RMCI* +11.774RMCI —27.197 0.914

ICR vs. sin (a)

ICR =1.173exp(4.291-sin(e))

0.457

667
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Figure 2. Relationships between ICR vs. BTS, RMCI, and sin (a).

These results obtained reveal that all the predictor
variables have a significant effect on ICR, and
should be considered as the input parameters for
developing the ICR predictive equation. On the
other hand, based on these results, the relationship
between ICR and the predictive variables was
non-linear. Thus it was necessary to employ the
non-linear multivariable regression analysis for
the precise prediction of ICR. Considering the
results obtained from simple regression analysis,
the following equation may be suggested for the
ICR prediction:

ICR =w,-BTS* +w, - BTS +w ,-RMCI* +

“4)
w,-RMCI +w -expw, -sina) +w
where w; is the corresponding regression
coefficient.
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To develop the above equation, all datasets (62)
were randomly divided into two categories,
namely training and testing datasets. The training
datasets were used to develop the regression
models and the testing datasets for evaluating the
performance of the models. In this work, based on
recommendations in the literature, 80% of the
whole datasets (50) were used for training, and the
remaining 20% (12) for testing the models. The
SPSS software was applied to find the optimal
values of regression coefficients based on the
training datasets. The aim was to find the
regression coefficient so that the developed model
had the minimum prediction error. The regression
coefficients for the suggested equation were
obtained as below:
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ICR =-9.254BTS* + 68.667BTS +
0.396RMCI* —0.081RMCI +
1196exp(0.035sinx) —1342

)

4. Performance of proposed model

In this section, the performance of the developed
prediction model was evaluated using the testing
datasets (12 cutting cases). In order to evaluate the
model performance, the predicted ICR wvalues
were compared with the actual ones. Table 7
shows this comparison between the predicted I[CR
using the proposed regression model with the
actual ICR values.

In this work, the adequacy of the prediction model
was also evaluated in terms of the coefficient of
determination (R?), variance account for (VAF),
and Root Mean Square Error (RMSE). A value for

R’ close to one shows a good fit of the prediction
model, and a value close to zero presents a poor
fit. Figure 3 shows the relationship between the
measured and predicted values, with good
coefficient of determination, obtained from the
prediction model. As it could be seen, the
determination coefficient was 0.956. Furthermore,
a prediction model is accepted as excellent when
RMSE is equal to zero and VAF is 100%. The
statistical values for VAF and RMSE, obtained
from the proposed regression model, were
95.281% and 2.110, respectively. The values for
R?, VAF, and RMSE indicated the acceptable
performance of the proposed model. Therefore,
the output of this model can be considered as a
preliminary estimation of ICR.

Table 7. Measured and predicted ICR values by proposed regression model for testing datasets.

- 3

No. UCS BTS RMCI « Measul;ed Proposed lfredlcgi(liglil(lj 5 (]I;LI/Chi) Ebrahimabadi
(MPa) (MPa) (MPa) (deg.) ICR (m'/h) model Gehring etal.  etal ot al.
1 14.8 3.8 4.89 46 22.2 20.86 82.78 51.81 3148 23.95
2 16 3.9 5.47 44 18.3 21.91 75.80 51.03 29.88 26.02
3 15.5 4 5.12 50 26.4 23.08 78.56 51.50 30.52 23.84
4 14.4 3.8 4.76 41 16.8 17.67 85.38 51.99 32.06 23.37
5 15.1 3.9 4.99 40 16 17.73 80.92 51.68 31.06 23.82
6 14.5 3.7 4.62 42 17.7 17.80 84.71 52.18 3191 23.20
7 17.2 3.9 6.27 50 28.5 28.60 69.85 49.97 28.46 29.83
8 153 3.9 5.06 46 23.2 21.24 79.73 51.59  30.79 24.10
9 16.2 4.2 5.16 52 25.6 22.75 74.74 51.44  29.63 22.87
10 25.6 4.2 8.46 53 40.4 40.74 44.56 47.16  21.81 39.72
11 27.6 43 9.12 45 41.6 40.34 40.93 46.35 20.73 42.79
12 28.1 4.4 9.29 42 41.9 38.71 40.11 46.15 20.49 42.47
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Figure 3. Relationship between measured and predicted ICR by proposed non-linear regression model.
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To indicate the prediction error of the proposed
model, the model was compared with the
previously developed empirical models, i.e. the
Gehring, Bilgin et al, Balci et al, and
Ebrahimabadi et al. models (see Table 2). It
should be mentioned that all of these empirical
models were developed for axial road-headers.
The predicted ICR values for testing datasets by
these models are presented in Table 7. The values
of RMSE for these models, based on the testing
datasets, are presented in Figure 4. As it can be
seen, the prediction error of the proposed
regression model is lower than the previously
developed empirical models. Thus the non-linear
multivariate regression analysis is a useful and
powerful means for predicting ICR of DOSCO
MD1100 road-headers in Tabas coal mine.
Finally, to show the strength of developed model,
it was compared with one of the most efficient
non-linear models, i.e. power form regression.
The equation of this model is expressed as
follows:

(6)

where w;, w,, w;, and w, are the regression
coefficients, which can be determined by the
non-linear regression analysis using the SPSS
software. Based on the training datasets, the
coefficients were determined as below:

ICR =w -BTS"> -RMCI"* -(sinat)

ICR =15.985-BTS . RMCI'*™ -(sina

)0.600 (7)
Based on the testing datasets, the R?, VAF, and
RMSE performance indices were obtained as
0.905, 90.393%, and 2.993, respectively.
Although these values indicated that the model
efficiency was acceptable, its efficiency was lower
than the proposed model (Eq. 5).

Based on what mentioned above, Eq. (5) is a
useful tool for estimating the cutting performance
of the road-header machine in Tabas coal mine,
which exhibits a reliable ICR prediction.

60 T T

50

40

30

RMSE

20

N

0
Proposed model ~ Gehring

Bilgin et al.

Balci et al.Ebrahimabadi et al.

Figure 4. RMSE values for various models.

5. Conclusions

The performance prediction of the road-headers is
one of the main subjects in determining the
economics of the underground excavation
projects. The poor prediction of machine
performance can lead to project delays and
over-costs. This work was performed to evaluate
the application of the non-linear multivariate
regression analysis for estimating the cutting
performance of the road-header machine (ICR)
based on the rock properties. In fact, in this work,
a new non-linear regression model (Eq. 5) was
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developed to predict ICR for DOSCO MD1100
road-headers in Tabas coal mine No. 1. This
model was constructed using the SPSS software.
In addition, the following main conclusions may
be drawn from this work:

e Based on the results obtained from the
simple regression analysis, all the predictor
variables (i.e. BTS, RMCI, and sin (o)) had
significant effects on ICR, and the
relationship between these variables and
ICR is non-linear. Therefore, the non-linear
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multivariable regression analysis was used
for developing the model.

e Based on the results obtained, the proposed
regression model could be used effectively
for prediction of the road-header
performance. The values for R?, VAF, and
RMSE for the proposed model were 0.956,
95.281%, and 2.110, respectively.

e The comparison of this model with the
previously developed models indicates that
the non-linear regression model gives more
reliable predictions than the other empirical
models.

e The outcome of the proposed model can be
considered site-specific and used as a
preliminary estimation of ICR for DOSCO
MD1100 in the future phases of Tabas coal
mine No. 1. Adjustment of the
time-scheduling of the project can be more
accurate based on this model. Furthermore,
this model gives a preliminary view to the
researchers so similar models can be
developed in other sites by modifications
based on the geotechnical and machine
conditions.
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