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Abstract 

Wall displacements and ground pressure acting on the lining of a tunnel increase with time. These time-

dependent deformations are both due to face advance effect and to the time-dependent behavior of the rock 

mass.  Viscoelastic materials exhibit both viscous and elastic behaviors. Thorough this study, the effect of 

different linear viscoelastic models including Maxwell, Kelvin and Kelvin-Voigt bodies on the behavior of 

tunnel is studied and the interaction of rock mass with elastic lining is analyzed. The surrounding rock mass 

is assumed to be homogeneous, isotropic and continuous. Hydrostatic stress field is also considered. In this 

paper, a series of formula for the foregoing models is driven to predict the displacement of lined and unlined 

circular tunnel and the pressure on the lining. The effect of lining stiffness and delay in installation of lining 

is analyzed. The results of new analytical relations show good correspondence with existing solutions. 

Keywords: Tunnel, Viscoelastic body, Displacement, Pressure, Kelvin model, Maxwell model, Generalized 

Kelvin model. 

1. Introduction 
Creep, i.e. time-dependenteffectis superimposed 
to thestrain induced by the front advance stress 
changes, andin some cases it seems to be very 
important [1]. The Creep analysis of tunnels 
excavated in viscoelastic continua under 
hydrostatic stress fields has been a frequent 
subject for research. 
Ladanyi and Gill (1998) have investigated the 
effect of long term rock deformation on lining 
pressure for different types of rock behavior [2]. 
In rock-support analysis presented by Cristescu et 
al. (1987), it is assumed that the rock behaves 
linearly viscoelastically and support has non-
linear behavior [3]. An analytical solution is 
proposed by Fahimifar et al. (2010) for the 
calculation of stress-displacement field around the 
circular tunnels in a Burger’s body [4]. In closed 
form solution presented by Sulem et al. (1987) a 
time-dependent model, taking into account the 
face advance effect is developed for the prediction 
of the wall displacements and the ground pressure 
acting on the lining of a circular tunnel [5]. 
Sakurai (1978), introducing an equivalent initial 
stress, proposed a method which takes into 

account the three-dimensional effects of the tunnel 
face for analyses of the behaviour of tunnel 
support structures installed in a viscoelastic 
medium [6]. An exact closed form solution is 
derived for the mechanical behaviour of a linear 
viscoelastic Burgers rockaround an axisymmetric 
tunnel, supported by a linear elastic ring [7]. 
In case of driving the tunnel in different 
viscoelastic material except Burger model, this 
paper investigates the problem of tunnel wall 
deformation and pressure on lining. According to 
Cristescu’s procedure, a series of relations for 
prediction of tunnel wall displacement and 
pressure on lining is extracted. These relations are 
compared with the existing Goodman solution [8] 
and Barla relations [9]. 

2. Methodology 

2.1. Tunnel support analysis incorporating 

rock creep 
Assuming that the rock behaves linear 
viscoelastically, a rock-support analysis is 
conducted by Cristescu (1987), [3]. In this 
research the same method is utilized. 
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Suppose that circular tunnels are driven in 
homogeneous isotropic linear viscoelastic 
incompressible (ν = 0.5) media.  The problem is 
solved for axisymmetric plane strain conditions 
for sections far from the face. The face effect can 
be considered by the confinement loss coefficient 
λ. 
The in situ stress field is assumed to be 
hydrostatic: 

0  vh
 (1) 

000 h   (2) 

 
In this method, the stresses in the constitutive 
equation of the rock are "relative" stresses, i.e. 
they are the difference between the actual stress 
and the hydrostatic "primary" stresses before 
excavation. In other words, they refer to the 
reference configurations is the in situ 
configuration before excavation [3]. 
Using these assumptions, Massier and Cristcscu 
[3, 10] showed that the excavation doesn’t cause 
variation in the relative mean stress and relative 
mean strain. Thus, they proposed the constitutive 
relations in terms of circumferential components 
to be used. The structural figures and constitutive 
relations for three viscoelatic model are presented 
in Table 1. 

Table 1. Viscoelastic models and their parameters 

[11] 

 

2.2. Calculation of tunnel wall displacement 
This part introduces the derivation procedure of 
tunnel wall displacement relations. 
The displacement is related to the strain 
component as follow: 

ru 
 

(6) 

the circumferential stress can be expressed as: 

20
0 ))(()(

r
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(7) 

 

where sP
 is the possible pressure acting on the 

tunnel wall.  
The lining is an elastic ring of constant thickness, 
sufficiently strong and rigid to be able to prevent 

rock mass failure. The lining is set at a time 0t that 

corresponds  with initial deformation 0U
. 

For the time before lining installation, the support 

pressure equals to zero - 
0sP

. 

After installation of lining 0tt 
, the support 

pressure is obtained by: 
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(8) 

 
By replacing relations (6),  (7) and (8) into any of 
the constitutive relations (3, 4 or 5) in Table 1 a 
differential equation for the rock -support 
interface that describes the convergence of the 
tunnel surface is obtained: 

),,,,( 00  rGKf
dt

du
s

 

(9) 

Equation 9 requires an initial condition - 0U
 to be 

solved which is found by considering the 
deformational properties of the viscoelastic rock 

at 0tt 
. 

For Maxwell body: 
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For Kelvin body: 
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and for Kelvin-Voigt body: 
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Total displacement consists of elastic and creep 
components can be obtained as follow: 

crel UUU 
                                                   (13) 

In this paper, the resulted relations for total 
displacement are presented as the multiplication 
of elastic displacement on the creep functions. 
The utilized creep functions

),()(),( 0

''' ttZandtZtZ
show the proportion of 

time-dependent behavior of rock mass on total 
displacement for three cases respectively: 
when tunnel is unlined,  

)(tZUU el 
                                                  (14a) 

when lining is installed simultaneously with the 
excavation, 
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)('' tZUU el 
                                              (14b)  

and when,  there is a delay in lining installation,  

),()( 0

'' ttZUtU el 
                                      (14c) 

Table 2 includes the relations for unlined tunnel 
for three viscoelastic models. 

Table 2. Displacement of unlined tunnel 
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The displacement of lined tunnel for these two 

cases (
00 t

 and  
00 t

 ) are given in Tables 3 
and 4. 

Table 3. Relations for calculation of lined tunnel 

displacement for case 
00 t
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2.3. Pressure on lining 
After calculation of displacement, the pressure on 
lining can be calculated using relation 8. 
The achieved relations for calculation of pressure 

on the lining are expressed in terms of 
),( 0ttW

function that depends on the selected viscoelastic 
model (Table 5).  

Table 4. Relations for calculation of tunnel 

displacement with delay 0t  in lining installation 
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Table 5. Relations for calculation of pressure on the 

lining 
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3. Results and Discussion 
The following sections discuss results of 
application and validation of developed relations 
for different models. 
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3.1. Kelvin body 
A circular lined tunnel with a radius of 3 m is 
driven in rock mass that satisfied kelvin 
viscoelastic model. Table 6 summarizes the 
Kelvin parameters of the rock mass surrounding 
the tunnel. 
In Figures 1 and 2, the displacement and scaled 
presssure on tunnel lining are illustrated (relation 
22 and 25). The scaled pressure is equal to the 
ratio of pressure on lining to overburden weight. 
According to Figure 2, the pressure increases and 
finally tends to in situ stresses. 

Table 6. Mechanical properties of Kelvin model 

σ0 

(MPa) 

G (MPa) Ks 

(MPa) 

η (MPa-

Year) 

t0 (Year) 

0.34 35 3320 193 0 

 

 

Figure 1. Displacement of tunnel wall      

 

Figure 2. Scaled pressure on lining 

Figure 3 shows the effect of rigidity of lining on 
applied pressure. It is obvious that pressure 

increases with rigidity of the lining and the 
applied pressure on an ideal rigid lining equals to 
overburden weight. 

3.2. Maxwell body 
Maxwell model consists of an elastic spring and a 
viscous dashpot that are put in series (Table1). 
The input data for validation of this model are 
taken from Barla research work (Tunnelling under 
squeezing rock conditions) [9]. The relations of 
this work are presented in appendix A. 
In the case of unlined tunnel both Goodman and 
Cristesco’s (Equation 15) methods end into the 
same result. While, for lined tunnel, Cristesco 
(relations 18 or 21 for displacement and 24 for 
pressure) eventuate the same result as Barla 
(Figure 4). The relations of Goodman solution are 
presented in appendix B. 
 

 
Figure 3. Effect of lining stifness on applied 

pressure 

 

Figure 4. Comparison of wall displacement of lined 

tunnel 

 

Table 7. Mechanical properties of rock mass and support 
G 

(MPa) 

r0 (m) η 

(MPa-Year) 

σ0 

(MPa) 

Ec (MPa) νc tc (m) t0 (year) 

2000 3 6000 7.50 31000 0.25 0.45 0 
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Figure 5 represents the scaled pressure on lining 
for three solutions. According to Figure 5 the 
ultimate pressure (for Barla and Cristesco 
methods) on lining is equal to overburden weight. 
 

 

Figure 5. Comparison of scaled pressure on the 

tunnel lining 

 
Now, we analyses the effect ofthe delay in tunnel 
lining instalation on the pressure. Figure 6 
considers different delays: t0=0, 0.03 and 0.1 
year. It can be seen that increase of delay in lining 
installation causes decrease in the inserted 
pressure on lining.  
 

 

Figure 6. The effect of different delay time on lining 

pressure  
 

3.3. Kelvin-Voigt model 
For comparison of extracted relation with existing 
ones, the data from Barla research work was used 
again [9]. The properties of rock mass are given in 
Table 8. 

Table 8. Creep parameters of rock mass 

G (MPa) Gel (MPa) Η (MPa-Year) n 

2 2000 6000 3000 

 
The calculated results of unlined tunnel  
displacemnts by Cristesco (relation 17) would be 
the same as those of Barla or  Gooman solution. 

 

Figure 7. Creep displacement of tunnel wall 

 
At the next step,  the  same conditions of rock 
mass  with a lining  with rigidity equals to1880 
MPa was considered.The calculated displacement 
and pressureare shown in Figure 8 and 9 (relations 
20 and 26). From these two curves, it can be 
concluded that the Kelvin-Voigt model, Goodman 
solution predict underestimated values than two 
other methods. 
 

 

Figure 8. Comparison of Creep displacement 

 

Figure 9. Pressure on tunnel lining 

 
In Kelvin-Viogt model, the final pressure for ideal 
solid lining is about half of the overburden weight 
(Figure 10). 
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Figure 10. The effect of lining stiffness on the final 

pressure 

 

4. Conclusions  
In this paper a series of analytical relations are 
provided for the calculation of unlined and lined 
tunnel wall displacements of three viscoelastic 
models –Maxwell, Kelvin and Kelvin-Voigt. 
Furthuremore, new formulae are presented to 
determine the pressure on lining, considering a 
delay in lining installation. 
The relations based on Cristescue’s method are 
compared with existing ones which were 
presented by Goodman and Barla solutions. There 
is full correspondence between results of three 
solutions for unlined tunnel. In the case of lined 
tunnel, the Cristesco method has good 
correspondence with Barla relations for Maxwell 
and Kelvin-Voigt bodies, but there is a difference 
in calculated displacement and pressure by 
Goodman solution. In all cases, Cristesco’s model 
gives higher values of pressure and displacement 
than Goodman solution for the case of lined 
tunnel.  
The effect of lining stifness and delay in 
installation of lining is analysed.  For Kelvin and 
maxwell model the ultimate pressure on lining is 
equal to overburden weight, but it is half of the 
overburden for Kelvin voigt.  
What can be concluded from all of mentioned 
analyses is that the selection of proper model has 
an important role in calculation of underground 
constructions. Each model has its own behaviour 
in response to tunnel excavation and lining 
installation. 
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Appendix A.  
Relations of Barla solution 
According to Goodman solution, the displacement 

for Maxwell- Mu  and Kelvin-Voigt - KVu

substances are respectively expressed as [9]: 
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for Kelvin-Voigt model: 



Rahmnannejad &Sofianos/ Journal of Mining & Environment, Vol.4, No.1, 2013 

33 
 

s

s

Kf

M

M

KV
K

rP

T

t

G

G

G

r
u 0000 )exp(1.11

2









































     (A3) 
and the pressure on lining: 
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Appendix B. 

Relations of Goodman solution 
According to Goodman solution, the tunnel wall 
displacement for Kelvin, Maxwell and Kelvin-
Voigt substances are respectively expressed as [8, 
11]: 
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Nomenclature  

cE
 , ct     and c  - Modulus of elasticity, 

thickness and poisson's ratio
 

)1(2 


E
G  - Shear modulus 

GM, GK – Shear modulus for Maxwell and Kelvin 

materials 

G0 – Initial shear modulus 

G∞ - ultimate shear modulus 

0h -tunnel depth 

Ks – Lining stiffness 

0

'

0

'

'

2

2

2

GKK

GKK

GKK

s

s

s







 - Current, ultimate and initial 

stiffness of rock mass – support system 
r - Radial distance from the tunnel center 

0r - Radius of tunnel 
 

0U - Initial deformation corresponding to time 

0tt   

G

r
Uel

2

00
- Elastic displacement

 

crU - Creep displacement 

sP -Pressure acting on the tunnel surface 

0t - Time of lining installation 

ct - Thickness of concrete lining 

),( 0ttW - Creep function for calculation of 

pressure on lining 

)(tZ , )(' tZ
, 

),( 0

'' ttZ - Creep function for 

calculation of displacement 

0 -Rock unit weight 

0  - Hydrostatic in situ stress state of stress 

v and h  are respectively vertical and horizontal 

in situ stress 

η - Viscosity of material 
ηM and ηK – Viscosity of Maxwell and Kelvin 

materials 

G
T


   - Relaxation time 

  - Confinement loss coefficient 
 

 

 

 

 

 

 

 

 

 

 

 


