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Abstract 

Anomaly separation using stream sediment geochemical data has an essential role in regional exploration. 

Many different techniques have been proposed to distinguish anomalous from study area. In this research, a 

continuous restricted Boltzmann machine (CRBM), which is a generative stochastic artificial neural network, 

was used to recognize the mineral potential area in Korit 1:100000 sheet, located 15 km south of Tabas, 

South Khorasan Province (East of Iran). For this purpose, 470 geochemical stream sediment samples were 

collected from the study area and analyzed for 36 elements. In order to achieve the goal, in the first step, the 

robust factor analysis on compositional data was applied to reduce the data dimension and to limit the 

multivariate analysis by selecting the main components of mineralization. In this procedure, the third factor 

(out of 6) consisting of Cu, Pb, Zn, Sn, and Sb, related to the metallogenic properties, was considered as the 

input set in CRBM. In continuation, the CRBM structure with the best efficiency after trying different 

parameters was stabilized. High-identified error values or anomalies were exteracted using two different 

thresholds (ASC and ASE) after training with the whole data and reconstructing it by CRBM. The anomalies 

were then mapped. These indicated the promissing areas. The field studies and existing mining indices 

confirmly demonestrated the results obtained by CRBM. 
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1. Introduction 

Geochemical anomaly detection using stream 

sediment sampling is the main and primary phase 

of mineral exploration that together with other 

methods like remote sensing and geophysics plays 

a major role in the regional exploration. Analysis 

of the stream sediment samples can reveal various 

geochemical anomalies, some of which can be 

considered as a surficial geochemical signature of 

the deposit-type [1]. Through recent decades, 

there has been developed and proposed numerous 

different methods to delineate anomalous and 

prospecting areas, from conventional parametric 

statistical thresholds to non-parametric methods 

like multi-fractal thresholds and from univariate to 

multivariate methods [2]. Factor analysis, one of 

the multivariate analysis methods, has been 

widely used for the interpretation of stream 

sediment geochemical data [3-6]. It is often 

applied as a tool for exploratory data analysis, 

dimension reduction, and to determine  

multi-element geochemical signatures that reflect 

the presence of mineralization [7]. Although in 

recent years, after Aitchison and some statisticians 

presented some theoretical solutions to deal with 

the problems of compositional data, new tools 

were developed and opened a window to correct 

interpretations. It spread through all the 

multivariate conventional methods like factor 

analysis, and made re-definition of the 

methodologies to work in simplex (i.e. the closed 

space of compositional data). The comparisons 

made showed much improved results in the 
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studied cases [8]. With the beginning of the 

millennium, novel methods emerged from 

computer science nature-inspired models of 

“machine learning”. They were widely used in 

various areas other than computer and electronics 

from biotechnology and medicine to earth 

sciences. Neural networks are among the most 

expanding and applicable algorithms that have 

been used in mining exploration and exploitation 

so far [9]. The new field of “deep learning” has 

made a revolution in pattern recognition and 

anomaly identification. Deep learning algorithms 

transform their inputs through more layers than 

shallow learning algorithms. At each layer, the 

signal is transformed by a processing unit, like an 

artificial neuron, whose parameters are 'learned' 

through training [10]. In 2006, a publication by 

Geoffrey Hinton and Ruslan Salakhutdinov drew 

additional attention by showing how  

many-layered feed forward neural network could 

be effectively pre-trained one layer at a time, 

treating each layer, in turn, as an unsupervised 

restricted Boltzmann machine, then tuning it using 

supervised back propagation [11]. A restricted 

Boltzmann machine (RBM) is a generative 

stochastic artificial neural network that can learn a 

probability distribution over its set of inputs [12]. 

RBMs have found applications in dimensionality 

reduction [13], classification [10], collaborative 

filtering [14], feature learning [15], and topic 

modeling [14]. The most recent application of 

RBMs and auto-encoder networks (that are stacks 

of RBMs) have been presented in regional 

exploration of mineral resources [16, 17]. The 

main objectives of this research work is to 

delineate the geochemical anomalies of Korit 

1:100,000 geological sheet sampled from stream 

sediments using the methodology [16] presented 

above. For this purpose, a continuous RBM or 

CRBM was designed and scripted in MATLAB. 

The results, after an essential step of dimension 

reduction and focusing on the major elements of 

mineralization as input to CRBM network and 

setting the best parameters, showed some target 

points as anomalies. This is considerable due to 

the geological field evidences and further 

investigations that confirmed the anomalies and 

made way for novel tools of exploration. 

2. Geological setting 

The Korit geological 1:100,000 quadrangle map is 

a part of Tabas block in the vicinity of Lut and 

Posht-e-Badam blocks that covers the west of 

South Khorasan province and the south of the city 

of Tabas, East of Iran. The geological formations, 

faults and sampling points in the region are shown 

in Figure 1. A part of Parvadeh Coal Company is 

in the SW corner of the map. This zone is the 

largest and most complicated geological unit in 

Iran as it went through numerous incidents and 

experienced numerous phases of metamorphic, 

magmatic, orogenic, and folding activities. The 

Lut block and the Afghan block that once had 

formed one single continent were separated from 

each other and an ocean was formed between 

them. The formation, evolution, closure, and 

orogeny that resulted in the closure of this ocean 

are considered as major developments in the east 

and SE of Iran [18]. Cretaceous played a key role 

in east and southeast of Iran in regard to the 

tectono-magmatic events, sedimentary basins, and 

formation of various rock units like ophiolitic 

complex, carbonate rocks and flysches, and later 

events that occurred in Tertiary were the 

continuation of developments in Cretaceous. 

Cretaceous sediments are seen in relatively large 

areas within the Lut and Flysch zones. Triassic 

deposits formed in eastern, central, and western 

parts of Lut block, but they are much more 

extensive in the Tabas because of the activity of 

Kalmard, Kuh–Banan and Anar faults. The 

Triassic sediments in Iran are mainly of shallow 

marine or continental shelf nature [19]. The 

presence of plant remains and coal beds suggests a 

continental or lagoon environment for the deposits 

[20]. The deposits of Middle and Upper Triassic 

were laid over the other deposits with a 

disconformity. Extensive lead–zinc mineralization 

occurred in Triassic rocks within this block and 

formed numerous deposits. In most parts of this 

area, facies such as sandstone, shale, and marl 

were formed during Jurassic [21]. In Early 

Cretaceous, marine transgression took place 

within the block in a large scale and gave rise to 

rock facies such as conglomerate, sandstone, and 

clastic limestone. At the end of Cretaceous 

(Maastrichtian–Paleocene), most part of deposits 

underwent severe folding accompanied with 

metamorphism and led to the formation of a 

disconformity between the deposits of Paleocene 

and Late Cretaceous [22]. In parts of this area, 

sedimentary facies belonging to Cenozoic 

(Paleocene) began to form with basal 

conglomerate and sandstone. They overlie the 

older rocks with disconformity [23]. During 

Quaternary and concurrent to final shape-up of the 

highlands, many sedimentary basins lost their 

connections with seas and turned into vast plains 

where evaporative sediments such as gypsum and 

salt along with clay and marl with desert 
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characteristics were formed [21]. A vast playa and 

some wetlands cover a large area of the map that 

extend to the east but in the western part, there are 

mountains and high hills with N-S trend. The 

most important formations with potential 

mineralization are Nayband, Garedu, Ab-haji and 

Shotori. The thick coal layers in the SW part of 

the map were bedded in Nayband (Ghadir) and 

Ab-Haji formations. The gypsum of Magu 

formation has also formed economical reserves in 

some parts [24]. 

Fluorite and barite deposits occur in the Triassic 

Shotori Formation of eastern Central Iran in the 

Tabas area, which are accompanied by lead–zinc. 

Important lead–zinc deposits have been formed at 

Triassic times within dolomites and dolomitic 

limestones (Shotori Formation in Eastern and 

Central Iran). It is worth mentioning that most of 

the fluorite reserves of Iran are the associated 

gangue minerals of this phase of lead–zinc 

mineralization [25, 26]. 

 

 

 
Figure 1. Geological map of Korit showing sampling locations, formations and faults. 

 

3. Methodology 

3.1. Robust factor analysis on compositional 

data 

Application of robust factor analysis to the 

compositional data to reduce its dimension (and 

removing minor elements regarding their high 

uniqueness and less importance) and limiting the 

multivariate analysis to the main factors of 

mineralization is an essential step in preparing an 

exploratory geochemical input set for CRBM. 

Factor analysis is a popular multivariate technique 

used to approximate the p original variables of a 

dataset by linear combinations of a smaller 

number k of laten t variables, called factors. This 

must be done in such a way that the covariance 

matrix (or the correlation matrix) of the p original 

variables is fitted well [27]. When applying factor 

analysis to the compositional data, it is crucial to 

apply an appropriate transformation. A  

log-transformation will often reduce data 

skewness but does not accommodate the 

compositional nature of the data. Robust factor 

analysis can be obtained via a robust estimation of 

the covariance matrix in the ilr
1
-transformed 

space. The results obtained then have to be  

back-transformed to the clr
2
-transformed space 

that allows for an interpretation [8]. For the 

random vector y, the factor analysis model is 

defined as Λ y f e  with the factors f of 

dimension k <D, the error term e, and the loadings 

matrixΛ . Using the usual model assumptions, the 

factor analysis model can be written as

  ΛΛ Ψ TCov y , where  Ψ Cov e  has a 

diagonal form. The diagonal elements are called 

uniquenesses (or unique variances), and they 

include the part of the variance of the components 

of y that is not explained by the factors. In the 

case of compositional data, the vector y is the clr 

transformed random vector (  y clr x ). The 

problem of singularity of  Cov y  can be solved 

                                                      
1
 Isometric log-ratio 

2
 Centered log-ratio 
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by projecting the diagonal matrix Ψ  onto the 

hyper plane 1 0  Dy y  formed by the clr 

transformation. The new model is then

  ΛΛ Ψ T TCov y H H , where H comes from 

the definition of the clr transformation. Since

TH H , then *Ψ ΨH H . The matrix *Ψ  has 

no longer a diagonal form. Then in an iterative 

procedure, the eigenvalues  Λ 
ij
  are 

estimated from the relation   *Ψ ΛΛ  TC y . The 

diagonal elements i  of Ψ  are updated by 

   2

.
1

 
k

i iji j
j

C y     
.i j

C y , which denotes 

the ith diagonal element of  C y . The iteration 

continues until the elements in *Ψ stabilize [8]. 

For a better interpretation of the estimated 

loadings matrixΛ , an orthogonal or oblique 

rotation can be performed. The estimation of 

loadings and scores is based on the estimation of 

the covariance matrix  Cov y . Traditionally, the 

estimation is done with the sample covariance 

matrix. However, it is well known that in case of 

outlying observations in the data set, this 

estimation may lead to very unreliable results. In 

this case, a robust estimation is required, and a 

popular choice is the MCD (minimum covariance 

determinant) estimator, for which also a fast 

algorithm is available [28]. The MCD estimator 

looks for a subset h out of n observations with the 

smallest determinant of their sample covariance 

matrix. The robust estimator of covariance is the 

sample covariance matrix of the h observations, 

multiplied by a factor for consistency at normal 

distribution. The subset size h determines the 

robustness of the estimator, and it can be varied 

between half the sample size and n. In order to 

deal with singularity of robust procedures in case 

of clr-transformed data, a way out is to use the ilr 

transformation. The ilr transformation can then be 

utilized to obtain a robust estimation of the 

covariance matrix of the random vector 

   Tz ilr x V y  which V is a  1 D D  

matrix with orthonormal basis vectors in its 

columns (i.e. 1T
DV V I ) [8]: 

 1 1. . .   

1 1
. . . 1.0. .0 .   1. . 1

1

 

 
   

  

D i

T

V v v v

i
i D

i i i

 (1) 

Using Equation (1), the obtained robust 

covariance matrix  Cov z  is then back-

transformed to the clr space by

    TCov y VCov z V . The resulting robust 

version of  Cov y  can now be used for the 

parameter estimation in factor analysis [8]. We 

applied this procedure with a varimax rotation of 

the factors in order to achieve a better 

interpretation of the resulting factors. The number 

of factors was 6, which resulted in a reasonable 

percentage of explained variability and lower 

uniquenesses (as shown in Table 1) demonstrating 

an acceptable separation of elements in factors. 

Figure 2 shows the resulting loading plot of the 

robust factor analysis for the clr transformed data. 

This Reimann representation of the loadings 

shows the loading value of the elements on the 

different factors by the position of the element 

names in the plot. In addition, the percentages at 

the top of the plot display the cumulative 

explained percentage of total variability [29]. 

It is clear that the 3
rd

 factor consisting of Cu, Pb, 

Zn, Sn, and Sb is related to the metallogenic 

properties. They have a strong relationship 

together as well as high loadings. This strong 

auto-correlation is also clear in the ternary plot 

(Figure 3 left), drawn by the CoDaPack software 

that is a suitable tool to explore the situation of the 

compositional data in simplex space [31]. Their 

ilr-transformed components of the 3
rd

 factor also 

show this linear relationship in euclidean space 

(Figure 3 right). 

 
Table 1. Uniquenesses of the robust factor analysis model for each element. 

Al As Ba Be Bi Ca Cd Ce Co Cr Cu Fe Ga K La 

0.1 0.515 0.375 0.144 0.149 0.299 0.212 0.227 0.095 0.055 0.01 0.046 0.095 0.159 0.132 

Li Mg Mn Mo Ni P Pb Rb Sb Sn Ti U V Zn Zr 

0.321 0.364 0.203 0.218 0.201 0.321 0.055 0.101 0.091 0.068 0.034 0.207 0.036 0.033 0.133 

All the calculations were done using robCompositions package [30]. 
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Figure 2. Loading plot of the factors. 

 

 
Figure 3. Ternary plot (left) and ilr-plot (right) of the 3rd factor. 

 

3.2. Continuous restricted Boltzmann machine 

(CRBM) 

Product of experts combines many individual 

experts by multiplying the probabilities together 

and then renormalizing. Each expert in the model 

can constrain different dimensions in a  

high-dimensional space, and their product will 

then constrain all the dimensions. Product of 

experts can effectively model the  

high-dimensional data and produce much sharper 

distributions than the individual experts or 

mixture models of the experts [32]. As an 

extended product of experts, a CRBM [33] can be 

trained iteratively using the minimizing 

contrastive divergence [34] and used to model 

complex high-dimensional continuous data. 

During an iterative training, the large probability 

samples have more chance to contribute to the 

architecture of a CRBM, so the trained model can 

better encode and reconstruct the large probability 

training samples. In geochemical exploration, the 

geochemical background and anomaly samples 

take, respectively, the large probability and small 

probability. If the model is trained on all the 

multivariate geochemical samples in a study area, 

the trained model will be able to identify the 
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multivariate geochemical anomaly samples from 

the training geochemical sample population [16]. 

CRBM is a stochastic neural network, where each 

unit has some random behaviors when activated. 

It has one visible layer and one hidden layer with 

only inter-layer connections [33]. Figure 4 shows 

a CRBM with two visible, three hidden, and two 

permanently-on bias units. The visible and hidden 

units have continuous states generated by adding a 

zero-mean Gaussian noise to the input of a 

sampled sigmoid unit, and are connected by 

weight matrix W [33]. 

 

 
Figure 4. CRBM topology with 3 hidden and 2 

visible units [16]. 

 

Let iv  and jh  represent the states of visible unit i 

and hidden unit j, respectively, and ij jiw w  be 

the bidirectional weights [16]. Given the states of 

hidden units, the states of visible units can be 

expressed by: 

 . 0.1
 

  
 
 
i i ij j i

j

v w h N   (2) 

and given the states of visible units, the state of 

hidden units can be stated as Equation 3. 

 . 0.1
 

   
 
j j ij i j

i

h w v N   (3) 

where function  x  is a sigmoid function as 

Equation 4. 

   
 

1
.
1

  
 

L H Lx
exp ax

     
(4) 

with lower and higher asymptotes at L  and H , 

respectively. Parameter a is the noise-control 

parameter that controls the slope of the sigmoid 

function, and thus the nature and extent of the 

unit's stochastic behavior [16]. Function  0.1iN  

represents a Gaussian random variable with zero 

mean and unit variance that with   constitute a 

noise input component according to the following 

probability distribution [33]: 

 
2

2

1

22

 
  

 

i
i

n
p n exp

 
 (5) 

In each training cycle, the model encodes and 

reconstructs the training samples population that 

is sequentially presented to it, while the inter-layer 

connection weights are modified. For each 

training sample, a one-step reconstruction 

executes the following: (a) samples are used to set 

the continuous states of visible units  iv ; (b) 

using Equations (3) and (4),  iv  are transformed 

into the continuous states of hidden units  jh ; 

(c) using Equations  (2) and (4),  jh  are 

transformed into the one-step reconstructed 

continuous states of visible units  îv ; and (d) 

using Equations (3) and (4),  îv  are transformed 

into the one-step reconstructed continuous states 

of hidden units  ˆ
jh  [16]. The contrastive 

divergence update equation for weights is: 

 ˆˆ ˆ  ij w i j i jw v h v h  (6) 

Where    i jv h  is the mean over the training data 

and w  is the learning rate for W. The  

noise-control parameter a is also updated while 

the training is running. Let is  express iv  for the 

visible units and ih  for the hidden units. Then 

parameter ia  is updated as follows [16]: 

 2 2

2
ˆ ˆ  a
i i i

i

a s s
a

  (7) 

In Equation 7, a  is the learning rate for the 

noise-control parameter a. In each training 

iteration, the online algorithm feeds the training 

samples to the model. In CRBM, the visible and 

hidden units are used for pre-processing the input 

data and capturing the data structure and 

probability distribution, respectively. The number 

of the visible units is equal to the dimension of the 

input data plus one permanently-on unit but the 

number of the hidden units depends on the 

complexity of the input data [16]. CRBM [33] can 

be viewed as an associative memory that can be 

trained to encode the complex non-linear  

non-Gaussian training data distribution [3]. 

Therefore, it is appropriate for modeling the 

complex multivariate probability distribution of 

the training geochemical sample population taken 

from a complex geological setting. In 
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geochemical exploration, the geochemical 

anomaly samples take much less probability than 

the geochemical background samples. Therefore, 

they can be identified by the trained CRBM. The 

number of hidden units defines the architecture of 

the model. If they are too few, the model does not 

have enough resources to learn the general 

features of the training sample population. Too 

many hidden units also increase the training time 

and can cause over-fitting. A good method to 

configure this is to start with few hidden units. If 

the model performs poorly, then the number of 

hidden units is increased. In case the model's 

performance does not improve, the network is 

‘stable’ or its architecture reaches optimality. For 

the multivariate geochemical anomaly 

identification, two anomaly criteria, average 

square contribution (ASC) and average square 

error (ASE), are defined based on the stabilized 

CRBM. The average square contribution is quite 

similar to the “novelty signal” defined by [16]. In 

the stabilized model, the average training signal 

contribution ijŵ  in Equation (6) is small for 

well-encoded background samples and large for 

poorly-encoded anomaly samples [16]. Thus ASC 

can be stated based on the training signal 

contribution of an input sample, and a threshold 

value can be used to recognize the anomaly 

samples presented to the model. Equation 8 is 

used to compute ASC [16]: 

 
2

ˆˆ
1

  i j i j

ij

ASC v h v h
pq

 (8) 

In Equation 8, p is the number of visible units 

except for the visible bias unit and q is the number 

of hidden units except for the hidden bias unit. 

The reconstructed errors are small for the 

background samples and large for the anomaly 

samples. Thus ASE can be defined based on the 

reconstructed errors of an input sample, and a 

threshold value can be applied to recognize the 

anomaly samples presented to the model. The 

ASE value can be computed as [16]: 

 
2

1

ˆ
1



 
p

i i

i

ASE v v
p

 (9) 

The threshold values for ASCs and ASEs can be 

chosen using some statistical methods. If ASC (or 

ASE) of a sample is less than the threshold value, 

it belongs to the background; otherwise, the 

anomaly. 

 

4. Data preparation, process, and results 

The dataset used in this study consists of 470 

geochemical stream sediment samples analyzed 

for 36 elements in order to explore the prospected 

anomalous areas in the regional scale. The 

compositional descriptive statistics of the data is 

presented in Table 2. It shows that some elements 

are barycentered in the 36-dimensional simplex. 

Radius test of the compositional dataset with 3 

statistics (Table 3) confirms the multivariate 

normality of the simplex. This test is based on the 

property that, under normality, the Mahalanobis 

distances from the samples to the mean are chi-

squared distributed [35]. Variation in simplex is 

displayed by three statistic: logratio(lr) variances, 

clr-variances, and total variance. Lr-variances are 

not displayed here but the other two important 

variances show that some elements such as S, Cu, 

Ca, Ba, Sr, Sn, Cs, Mg, Na, Sn, and Ti have 

higher clr-variances and a more essential role in 

the variability of the simplex. This may be due to 

more presence of them in the lithology of the area 

and their mobility in the stream sediments. The 

total variance is relatively low. 

In the first step, the dimension of the data was 

reduced using the robust factor analysis, and as 

stated earlier, elements of the 3
rd

 factor were 

selected as the input layer of CRBM. The 

stabilized CRBM structure with the best 

performance (MSE = 0.00354) after trying 

different parameters was: 100 hidden neurons, 

learning rate 0.5, learning momentum 0.7, noise 

control parameter for visible units 0.2, noise 

control parameter for hidden units 0.9, sigmoid 

activation function, standard deviation of normal 

noise 0.4, and max iteration 100. The plots of two 

different thresholds (ASC & ASE) to identify 

anomalies after training with the whole data and 

reconstructing it by CRBM are shown in Figure 5. 

The horizontal axis in both of them represents the 

indices of the samples. The red lines show the 

0.975 quantile of the reconstructed errors as a cut-

off threshold. The samples (or indices) that cut the 

threshold (i.e. are above the threshold) are 

anomalies. 

The high-errors identified in Figure 5 were 

mapped. They showed the anomalies (Figure 6) 

that lie mostly on the Red Bed Neogen 

Conglomerate formation. In Figure 6, The red 

circles illustrate the mineral potential area for the 

Cu, Pb, Zn, Sn, and Sb elements. The field 

observations and the existing mining indices in 

the study area confirmly proved the results 

obtained by CRBM. There are good aggreements 

between the field study and CRBM results. 
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Table 2. Compositional descriptive statistics of the data. 

Variable Center Q1 Median Q3 Clr Variances 
Al 0.0701 0.0543 0.0697 0.0389 0.0402 
As 0.0001 0.0001 0.0001 0.0001 0.0511 
Ba 0.0013 0.0009 0.0012 0.0016 0.1376 
Be 0 0 0 0 0.0969 
Bi 0 0 0 0 0.698 
Ca 0.6111 0.526 0.5985  0.1874 
Cd 0 0 0 0.6625 0.0644 
Ce 0.0001 0.0001 0.0001 0 0.0479 
Co 0.0001 0.0001 0.0001 0.0001 0.033 
Cr 0.0002 0.0002 0.0002 0.0001 0.048 
Cs 0 0 0 0.0003 0.1549 
Cu 0.0002 0.0001 0.0002 0 0.3444 
Fe 0.1971 0.1435 0.1896 0.0002 0.0498 
Ga 0 0 0 0.2528 0.0292 
K 0.0111 0.0083 0.0107 0 0.0529 
La 0.0001 0 0.0001 0.0135 0.0587 
Li 0.0001 0.0001 0.0001 0.0001 0.0921 
Mg 0.0741 0.0575 0.0732 0.0001 0.1466 
Mn 0.0046 0.0035 0.0044 0.0865 0.0436 
Mo 0 0 0 0.0058 0.0239 
Na 0.0092 0.0062 0.0082 0 0.2205 
Ni 0.0002 0.0002 0.0002 0.0116 0.0336 
P 0.0029 0.0023 0.0029 0.0003 0.026 

Pb 0.0001 0.0001 0.0001 0.0034 0.067 
Rb 0.0001 0.0001 0.0001 0.0002 0.0863 
S 0.0114 0.0047 0.0102 0.0001 1.1596 

Sb 0 0 0 0.0235 0.0342 
Sn 0 0 0 0 0.3347 
Sr 0.0022 0.0017 0.002 0.0025 0.1719 
Te 0 0 0 0 0.1202 
Ti 0.0026 0.0018 0.0025 0.0036 0.3156 
U 0 0 0 0 0.055 
V 0.0004 0.0003 0.0003 0.0004 0.1 
Y 0.0001 0 0.0001 0.0001 0.0151 

Zn 0.0004 0.0003 0.0004 0.0005 0.0711 
Zr 0 0 0 0 0.0879 

   Total Variance 4.671 

 
Table 3. Radius test of normality with three statistics. 

Anderson-Darling Cramer-von Mises Watson 
A

2* 
p W

2* 
p U

2* 
p 

Radius Test 
∞ <0.01 15.7379 <0.01 10.1711 <0.01 

 

 
Figure 5. Two anomaly thresholds (ASC & ASE) defined for CRBM reconstructed error. 
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Figure 6. Anomalies detected by two thresholds on CRBM output. 

 

5. Conclusions 

In geochemical exploration, anomaly 

identification is the most important target of data 

analysis. The more precise and correct the targets 

are detected, the lower would be the costs of 

exploration operation in the next phases. Deep 

belief networks, and more specifically, restricted 

Boltzmann machines are applied to identify 

multivariate anomalies. Its specific recursive 

structure enables the model to recognize the 

probability distribution of the data. In order to 

find a meaningful relationship between the input 

and output data, we selected a paragenetic subset 

related through a factor. This helps to reduce the 

complex geological structure in addition to 

increase the overall process convergence and 

required memory of the network. The major 

drawback of a neural network could be setting its 

parameters. In this case, also the parameters 

should be configured to get the best performance. 

The most influencing parameters are the number 

of hidden neurons, learning rate, noise control 

parameter for visible units, noise control 

parameter for hidden units, and standard deviation 

of normal noise. The most recommended 

activation function in the literature is sigmoid, 

which is a rescaled and shifted logistic function 

and allows the training algorithm to converge 

faster. The stabilized best performed network 

resulted in the reconstructed probability 

distribution of the input data. The difference 

between them, which is called ‘reconstructed 

error’, was then mapped and showed anomalous 

samples of the studied area. These samples are 

mainly on the red neogene conglomerate, and one 

is on the Hojedk formation. The field 

investigations confirmed the results concluded by 

CRBM. 
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‌:چکیده

برای تفکیک نواحی آنومالی از منطقه های مختلف فراوانی  ای دارد. روشای نقش اساسی در اکتشافات ناحیههای ژئوشیمیایی رسوبات آبراههجدایش آنومالی داده

که یک شبکه عصبی مصنوعی تصادفی است، برای تشخیص نواحی  (CRBM)اند. در این تحقیق، از ماشین بولتزمن محدود پیوسته مورد مطالعه پیشنهاد شده

کیلومتری جنوب طبس واقع در استان خراسان جنوبی )شرق ایران( استفاده شده است. به این منظور،  65کریت در  6:600،000شناسی  معدنی بالقوه برگه زمین

عنصر آنالیز شده است. در نخستین گام، برای نیل به هدف پژوهش، پس از  91برای  ای از منطقه مورد مطالعه برداشت ونمونه ژئوشیمیایی رسوب آبراهه 070

ها و محدود کردن تحلیل چند و واریانس کلی سیمپلکس(، تحلیل فاکتوری مقاوم برای کاهش بعد داده clrهای ترکیبی )مرکز، واریانس بررسی آمار توصیفی داده

های متالوژنی منطقه بود، به که مرتبط با ویژگی Sbو  Cu ،Pb ،Zn ،Snفاکتور( شامل  1. سپس فاکتور سوم )از سازی انجام شدمتغیره به فاکتور اصلی کانی

دست آمد.  با بهترین کارایی به CRBMدر نظر گرفته شد. آنگاه پس از امتحان پارامترهای مختلف، ساختار نهایی یک  CRBMعنوان ورودی ماشین بولتزمن 

ها، بر اساس یک معیار تفکیک آماری استخراج  ها و بازسازی آن( پس از آموزش شبکه روی کل دادهASEو  ASCهای دو حد آستانه )یمقادیر خطا یا آنومال

های معدنی موجود،  های به دست آمده در دو نقشه ترسیم شد که نقاط امید بخش در آن نشان داده شده است. مطالعات صحرایی و اندیسشد. در ادامه آنومالی

 را تائید کرد. CRBMنتایج به دست آمده با 

 ، تحلیل فاکتوری مقاوم، کریت.CRBMای، رسوب آبراهه کلمات‌کلیدی:

 


