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Abstract 

Motivated by the recent successful results of using GIS modeling in a variety of problems related to the 

geosciences, some knowledge-based methods were applied to a regional scale mapping of the mineral 

potential, special for Cu-Au mineralization in the Feyz-Abad area located in the NE of Iran. Mineral 

Prospectivity Mapping (MPM) is a multi-step process that ranks a promising target area for more 

exploration. In this work, five integration methods were compared consisting of fuzzy, continuous fuzzy, 

index overlay, AHP, and fuzzy AHP. For this purpose, geological maps, geochemical samples, and 

geophysics data were collected, and a spatial database was constructed. ETM 
+
 images were used to extract 

the hydroxyl and iron-oxide alterations, and to identify the linear and fault structures and prospective zones 

in regional scale; ASTER images were used to extract SiO2 index, kaolinite, chlorite, and propylitic 

alterations in a district scale. All the geological, geochemical, and geophysical data was integrated for MPM 

by different analysis. The values were determined by expert knowledge or logistic functions. Based upon this 

analysis, three main exploration targets were recognized in the Feyz-Abad district. Based on field 

observation, MPM was proved to be valid. The prediction result is accurate, and can provide directions for 

future prospecting. Among all the methods evaluated in this work, which tend to generate relatively similar 

results, the continuous fuzzy model seems to be the best fit in the studied area because it is bias-free and can 

be used to generate reliable target areas. 

 

Keywords: Mineral Prospectivity Mapping, Fuzzy, AHP, Index Overlay, Feyz-Abad. 

1. Introduction 
Lut block in eastern Iran is located along the 

Alpine-Himalayan orogenic and metalogenic belt. 

The tectonic setting, type of magmatism, and 

history of ancient mining suggest a great potential 

for different types of mineral deposits in the Lut 

block. Due to the unsystematic mineral 

exploration and lack of modern exploration 

techniques, there are still several unexplored 

outcropping of ore deposits in this area. 

The Feyz-Abad area lies in the north of the Lut 

block, NE Iran, with an approximate area of about 

2500 km
2
. The sedimentary rocks in this area 

belong to Paleozoic. A suite of ophiolitic rocks 

(Cretaceous) is exposed in the northern part. 

Pyroclastic and volcanic rocks (mainly 

intermediate to felsic) are widespread all over in 

this area. Volcanic activities occurred during the 

Eocene time [1]. Post-Eocene magmatism is 

mostly manifested by intrusion of granodiorite, 

granite, and diorite into the volcanic rocks (Figure 

1). There are three trends of faulting in this area: 

east-west, north-east, and north-west. 

Mineralization is mainly structurally controlled 

and found along the faults and within the fault 

zones [2]. 

Magmatism and metamorphic belt relate to arc 

volcanism, with Late Mesozoic to Neogene 

volcanic rocks distributed within. Different types 
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of porphyry, hydrothermal, and iron oxide 

deposits have been identified along the  

Khaf-Dorouneh volcanic and plutonic belt in 

north-eastern Iran. Kuh-e-Zar is one of these ore 

deposits known as an Fe-oxide gold deposit [3]. 

The gold and copper deposits in this structure 

zone are strongly controlled by a large-scale fault 

system. 

The purpose of this work was to use the GIS 

techniques to perform the analysis and to provide 

maps for a better understanding of the 

geochemical anomalies and mineral potentials 

within the Feyz-Abad area, and to indicate the 

best target for Mineral Prospectivity Mapping 

(MPM) to specify the prospective regions. MPM 

was recognized according to the metallogenic 

conceptual model for the Au-Cu deposits. 

 

 
Figure 1. Simplified geological map of Feyz-Abad area (original map from [1]). 
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2. Modeling 
Several approaches are applied for MPM, which 

are classified as data-driven and  

knowledge-driven methods [4-6].  

Knowledge-driven predictive mapping of mineral 

prospectivity is suitable in the regions that are 

less-explored geologically, where no or very few 

known mineral deposits occurred [7]. In 

knowledge-driven prediction, the assigned 

weights to every spatial evidence layer are based 

upon a geoscientist's knowledge. In contrast,  

data-driven predictive mapping of mineral 

prospectivity is suitable in the regions that are 

moderately-to-well explored, where the main 

objective is to restrict new targets in order to 

explore undiscovered mineral deposits of the type 

sought (e.g. [8]). Some examples of these methods 

are Boolean logic [9], index overlay [9], 

Dempster-Shafer belief theory [10], and fuzzy 

logic [11]. In the recent years, fuzzy method has 

been applied to MPM in several ways such as 

fuzzy logic, fuzzy AHP [12], and fuzzy weights of 

evidence [13, 14]. The fuzzy analytic hierarchy 

process is useful when the act of decision-making 

is faced with several options and decision criteria. 

Recent works on fuzzy methods are based upon a 

combination of data and knowledge such as 

Neuro-fuzzy [15] and Fuzzification of  

continuous-value [16]. 

In the data-driven methods, the assigned weights 

to every spatial evidence layers are quantified. 

Spatial relationships between the known deposits 

and particular datasets were used to represent the 

prospectivity recognition criteria [17].  

Data-driven contains different methods such as 

weight of evidence [9], logistic regression [18], 

neural networks [19, 20], evidential belief 

functions [21, 22], and Bayesian network 

classifiers [23]. 

3. Methods and result 

3.1. Data 
Geological, geochemical, and geophysical 

datasets were available and used as sources of 

evidence for MPM. To prospect the metalogenic 

zones for the Au-Cu deposits, the important layers 

were determined as pyroclastic rocks, intrusive 

bodies, alteration zone, volcanic rocks, faults, 

high magnetic zone, Fe-Oxide outcrops, ore 

occurrences, and Au, As, Ag, Cu, Mo, Pb, and Zn 

geochemical anomalies. 

The geological maps contained information on 

igneous rocks, sedimentary formations, faults, and 

dikes, which were mapped at a scale of 1:100,000. 

A simplified geological map was constructed 

(Figure 1). The lithology layer consisted of 35 

units. The selective rocks and ore occurrences 

indicate that the northern part is most important 

for MPM (Figure 2). 

Faults play a role in enabling fluid passage during 

mineralization. The objective of fault density 

analysis is to determine the distribution of faults 

over the entire region, and the degree of fault 

convergence. As the gold and copper deposits in 

this area are controlled by a large-scale fault 

system, the density of faults was determined 

(Figure 3). A separate fault layer was also 

constructed based on the distance from faults. 

Buffer analysis was performed for faults and ore 

occurrences in a radius to 1500 m with intervals 

of 500 m. 

 

 
Figure 2. Selective rocks and ore indicators in Feyz-Abad area. 



Saadat/ Journal of Mining & Environment, Vol.8, No.4, 2017 

614 

 

The geochemical data includes 2066 sample 

analysis from 28 major and trace elements. The 

geochemical anomaly map of some elements is 

shown in Figures 4 and 5. There are still some 

challenging aspects in generating stream sediment 

geochemical evidential maps. Some researchers 

have combined fuzzy with data-driven methods. 

For instance, [25] used ilr-transformation and 

staged Factor Analysis (FA) of stream sediment 

geochemical data for fuzzy membership scores to 

prepare a geochemical anomaly map. 

The higher efficiency of staged FA over ordinary 

FA in extracting significant multi-element 

geochemical signature for the mineral deposit has 

been demonstrated by [24]. In this work, it was 

found that ilr-transformation resulted in 

approximately symmetric distributions for the 

stream sediment element data. 

To examine the ilr-transformed data in factor 

analysis, Principal Component Analysis (PCA) 

was utilized for the extraction of factors. 

Furthermore, varimax rotation of factors was 

applied [25]. The findings here indicate that the 

ilr-transformed data for Ni, Cr, and Co in factor 

analysis can extract components representing 

anomalous multi-element geochemical signatures. 

However, for Cu and Au mineralization and their 

assemblage elements, there are no significant 

factors, which may be due to their different 

genesis and type of mineralization. As a result, 

separate raster images were produced for each 

indicator element. Pixel size of 100 m × 100 m 

has been used in all maps in this work. Figure 6 

shows an example for Cu and Au anomalies. 

The geophysical data includes regional air-borne 

magnetometry data, and shows a high magnetic 

potential in the northern part of the studied area. 

Alteration zones are gained by processing satellite 

images. A scene of Landsat Enhanced Thematic 

Mapper plus (ETM
+
 data, path 159, row 36, date 

2000) and advanced space-borne thermal emission 

and reflection radiometer (ASTER, 2001) are used 

for an enhancing alteration. 

These images are geometrically corrected using 

control points from topographic sheets. Data 

processing has been done by the ENVI 

(Environment for Visualizing Images) software. 

Band Ratios, PCA, and Spectral Angel Mapper 

(SAM) method were used to delineate the 

associated zones of hydrothermal alteration and 

iron oxide minerals. SAM is a procedure that 

determines the similarity between a pixel and each 

one of the reference spectra based on the 

calculation of the "spectral angle" between them 

[26]. Aster images are used for mapping 

hydrothermal alteration minerals such as 

Pyrophyllite, Kaolinite, Illite, Muscovite, Sericite, 

and carbonate. Enhanced kaolinite and phyllic 

zones by SAM methods are shown in Figure 7. 

Argillic, Phyllic, and Propylitic alterations were 

determined with the aid of SWIR bands in aster 

imagery but iron oxide composites such as 

magnetite and hematite appeared by Landsat 

Imagery. 

 

 
Figure 3. Density map of faults in Feyz-Abad area. 
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Figure 4. Distribution of Au and Cu in Stream sediments in Feyz-Abad area. 
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Figure 5. Distribution of Zn and Pb in Stream sediments in Feyz-Abad area. 
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Figure 6. Distribution map of Cu and Au anomalies in Feyz-Abad area (based on ilr data). 

 

Figure 7. Results of enhanced Phyllic zone (left) and kaolinite zone (right). 

 

3.2. Methodology of integration 

Mineral exploration is a complex process in which 

the main purpose is to discover a new mineral 

deposit in the region of interest. To achieve this 

goal, various thematic (e.g. geological, 

geophysical, geochemical) geo-datasets should be 

collected, analyzed, and integrated for MPM 

(Figure 8). Five different methods have been used 

to extract the favorable area for more exploration, 

as shown below. 

 

 

 

 

 

B A 
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B A 

 
 

D C 

Figure 8. Some weighted evidential layers: A) geology (for AHP) B) fault intersection (for fuzzy) C) geochemistry 

(fuzzy sum operator) D) geology (fuzzy). 
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3.2.1. Fuzzy 

The fuzzy method allows weights to be assigned 

to each layer based upon expert opinions. The 

fuzzy-set theory defines a degree of membership 

in a set represented by a value between 0 and 1. 

The value of the membership function can be 

determined by two methods. One method is to 

calculate according to the membership function 

curve; the other is to assign values artificially 

according to geological knowledge. The fuzzy 

model in mineral prediction consists of two steps: 

(1) fuzzification of data (2) fuzzy synthesis of 

fuzzified data. Fuzzy weights for different 

evidential layers are shown in Table 1. Fuzzy 

synthesis is executed using the operator. The most 

basic fuzzy operators are: fuzzy AND; fuzzy OR; 

fuzzy algebraic product; fuzzy algebraic sum; and 

fuzzy gamma. 

The fuzzy Sum operator highlights the maximum 

values available for all conditions. This operator 

was used for geochemical and lithological events. 

The sum fuzzy operator assumes that the more 

favorable input is better. The resulting sum is an 

increasing linear combination function that is 

based upon the number of criteria entering the 

analysis. The fuzzy gamma operator was used to 

calculate the final prospectivity map in the current 

work (Figure 9). The fuzzy Gamma type is an 

algebraic product of fuzzy Product and fuzzy 

Sum, which are both raised to the power of 

gamma. The generalize function is as follows: 

µ(x) = (FuzzySum)
γ
 * (FuzzyProduct)

1-γ
. 

The final prospective map was prepared with 

fuzzy γ = 0.9 operator. This map shows the 

prospective area for the Au-Cu deposits (Figure 

14). 

  
Table 1. Score for different evidential layers. 

Weight)) (Layer) Weight)) (Layer) 

0.9 Intrusive 

Lithology 

0.9 Au 

Geochemical anomalies 

0.8 Volcanic 0.85 Cu 

0.3 Sedimentary 0.5 Pb 

0.1 Alluvium 0.5 Zn 

0.7 Buffer 500 Ore 

occurrences 

 

0.8 As 

0.6 Buffer 1000 0.7 Mo 

0.5 Buffer 1500 0.9 Ag 

0.9 Silisification 

Alteration 

and 

oxidation 

0.7 Buffer 50 Faults density 

0.8 Serisitic 
0.7 Buffer 50 Air-borne magnetic 

0.7 Argillic 

0.5 Propylitic 0.8 Buffer 500 
Faults 

0.6 Fe oxide 0.6 Buffer 1000 

 

 

 

 

 

 

 

 

 

 

Figure 9. Schematic inference network for MPM in Feyz-Abad area. 
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3.2.2. Integration of Continuous Fuzzy 

Weighted Evidence Layer 

To transform data into the [0, 1] range, logistic 

functions are used in order to generate fuzzified 

evidential maps. Moreover, to transform a dataset 

into a logistic space based on the minimum and 

maximum data values and slope variations 

between them, some logistic functions can be 

utilized [15]. Recently, researchers [16] have 

applied an equation to assign continuous weights 

to individual evidential layers into the same space 

for more efficiency. In this research work, the 

following equation, as mentioned by [16], was 

used to determine suitable values for i and s in the 

logistic function for transforming continuous 

dataset into fuzzy space: 

1

- ( - )
1





F
Ev s Ev i

e

 (1) 

where FEv is a score in the [0, 1] range, fuzzy 

weight in a logistic space, i and s are the inflection 

point and slope, respectively, of the logistic 

function, and Ev is the evidential value of each 

pixel in an input map from which FEv is estimated. 

The parameters i and s determine the shape of the 

logistic function, and hence, the output fuzzy 

weights. The above-mentioned equation is written 

two times to make a system of equations, as [15]: 

min

max

(min) ( )

(max) ( )

1

1

1

1

 

 


 


 
 

Ev s Ev i

Ev s Ev i

F
e

F
e

 (2) 

where FEv (min) and FEv (max) are the lowest and 

highest fuzzy scores of evidential values, and 

Evmin and Evmax are their corresponding minimum 

and maximum values in the input dataset. The i 

and s values are calculated based on the 

corresponding minimum, Evmin, and maximum, 

Evmax, evidential values in the input dataset as 

[16]: 

max min

9.2
s

Ev Ev



 (3) 

max min

2

Ev Ev
i


  (4) 

Table 2 shows the calculated i and s values 

defined using the above equations. Some 

continuous weighted maps are shown in Figure 

10. Fuzzified layers have integrated with fuzzy 

gamma operator with a high value of gamma  

(= 0.9). 

3.2.3. Index overlay 

In the index overlay method, each class of maps is 

given a different score, allowing for a flexible 

weighting system from 1 to 9. The table of scores 

and the map weights can be adjusted to reflect the 

judgment of experts in the domain of the 

application under consideration [4]. 

In order to use the index-overlay combination 

method, spatial relationships are quantified as 

maps that comprise nine distinct levels of 

prospectivity (Tables 3 and 4). In this work, each 

one of the layers has been integrated based on 

their priority. The integration has been done using 

the Arc GIS software, and the evaluation of these 

layers has been done in the Expert Choice 

software (Tables 2 and 3). All the evidential 

layers converted to raster and combined by raster 

calculation. A mineral prospectivity map based on 

this model is illustrated in Figure 14.

 
Table 2. Calculated i and s values for different datasets of evidential values, defined by solving a system of 

equations. 

 Evidential value s i 

Geology geology 11.5000 0.5000 

Geochemical anomalies 

Au 11.5000 0.5000 

As 13.1429 0.4500 

Ag 13.1429 0.4500 

Pb 14.1538 0.4250 

Mo 15.3333 0.4000 

Zn 14.1538 0.4250 

Cu 11.5000 0.5000 

Structures Faults 13.1429 0.4500 
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B A 

  
D C 

Figure 10. Fuzzy evidence layer of (A) Cu geochemical signature, (B) fault density, (C) Zn geochemical signature 

(D) fuzzy prospectivity model generated by integration evidence layers. 

 
Table 3. Score for different evidential layers. 

Weight)) (Layer) Weight)) (Layer) 

9 Intrusive 

Lithology 

9 Au 

Geochemical anomalies 

8 Volcanic 9 Cu 

3 Sedimentary 6 Pb 

1 Alluvium 6 Zn 

7 Buffer 500 
Ore 

occurrences 

8 As 

6 Buffer 1000 7 Mo 

5 Buffer 1500 9 Ag 

9 Silisification 

Alteration 

and 

oxidation 

7 Buffer 50 Faults density 

8 Serisitic 
7 Buffer 50 Air-borne magnetic 

7 Argillic 

5 Propylitic 8 Buffer 500 
Faults 

6 Fe Oxide 6 Buffer 1000 
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Table 4. Final score for evidential layers. 

(Weight) (Layer) 

8 Faults 

7 Geochemistry 

9 Lithology 

9 Mineralization 

8 Alteration 

6 Geophysical Anomaly 

 

3.2.4. AHP 

The Analytical Hierarchy Process (AHP) is one of 

the best ways for deciding among the complex 

criteria structure in different levels. The concept 

of AHP was developed for pairwise analysis of 

priorities in multi-criteria decision-making [24]. It 

aims to derive a hierarchy of criteria based on 

their pairwise relative importance with respect to 

the objective of a decision-making process. The 

method adopts a nine point continuous pairwise 

rating scale for judging which criteria is less or 

more important than another (Figure 11). The 

AHP method is used in this research work to 

evaluate the weight of data and compare the 

results with fuzzy and fuzzy AHP. 

In this work, all data is classified based on their 

relative importance. Then pairwise comparison 

has been prepared in expert choice software. A 

hierarchy has been constructed based on expert 

opinions. The hierarchy tree is shown in Figure 

12. The consistency ratio was less than 0.1 after 

pairwise comparisons, so the result was correct for 

MPM. AHP weights Multiple to layers and 

integration of the all final layers have been done 

in ArcGIS. The final prospectively map shows the 

prospective area for Au-Cu deposits (Figure 14). 

The mineral potential map was classified into five 

major classes including very poor to very good 

potentiality. Most favorable potential areas are 

shown in Figure 14. 

 

 
Figure 11. Continuous rating scale for pairwise comparison of relative importance with respect to a proposition 

(adapted from [27]). 

 

 

 
Figure 12. Parameter weighting of different data and structure layer based on AHP with inconsistency = 0.01. 
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3.2.5. Fuzzy AHP 

The fuzzy analytic hierarchy process is one of the 

most accepted multi-criteria decision-making 

techniques. The fuzzy AHP is a synthetic 

extension of the classical AHP method when the 

fuzziness of the decision-makers is considered. 

This technique can be viewed as an advanced 

analytical method developed from the traditional 

AHP. A number of methods have been developed 

to handle the fuzzy AHP. Chang [25] has 

introduced a new method for fuzzy AHP using 

triangular fuzzy numbers for pairwise comparison 

scale of fuzzy AHP and the use of the extent 

analysis method for the synthetic extent values of 

the pairwise comparisons. The weights of the 

nine-level fundamental scales of judgments are 

expressed via triangular fuzzy numbers (TFNs) in 

order to represent the relative importance among 

the hierarchy’s criteria [28]. 

The MPM steps involve (1) construction of a 

hierarchy, (2) preparation of important layers, (3) 

creation of pairwise comparison matrix, (4) 

calculation of consistency ratio, (5) construction 

of fuzzy evaluation matrix, (6) calculation of 

normalized weights, and (7) using fuzzy 

operators. 

Construction of a hierarchy is the first step 

involved in doing fuzzy AHP (Figure 13). 

Evaluation hierarchy for MPM is divided into 

three levels, namely goal (MPM), multiple criteria 

(geology, geochemistry, and geophysics), and 

alternatives (Figure 13). In this work, pairwise 

comparison matrices were done using fuzzy AHP 

solver and excel software, utilizing the expert 

opinions. Matrix of fuzzy paired comparisons for 

goal is shown in Table 5. The CR value for 

criteria is 0.01; for geology alternative,  

CR=0.02; and for geochemical alternative, 

CR=0.03, all less than 0.1, so the pairwise 

comparison matrix is consistent. Map layers were 

prepared in a GIS environment as raster layers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure13. Hierarchy trees used in this paper. 

 

After the matrix of paired comparisons, the 

relative and final weights must be calculated by 

the extent analysis method. The value for the 

fuzzy synthetic extent with respect to the i-th 

object is defined by: 

1

1 1 1


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 
   

 
 
M n m

i i

i gi gi

j i j

S M M  (5) 

In the above equation, Si is a triangular number. 

All M
j
gi(j = 1, 2,…, m) are triangular fuzzy 

numbers. As M1 = (l1, m1, u1) and M2 = (l2, m2, u2) 

are two triangular fuzzy numbers, the degree of 

possibility of M1 ≥ M2 is defined by: 

2 1

2 1 1 2

1 2

2 2 1 1

1         if m m

V(M M ) 0      if l u  

l u     otherwise

(m u ) (m l )


 


  
 


  

 
(6) 

To compare M1 and M2, the values for both V(M1 

≥ M2) and V (M2≥ M1) are required. The 

probability that a convex fuzzy number is greater 

than k, convex fuzzy numbers Mi (1,2, …,k) can 

be defined by: 

V (M ≥ M1; M2…MK) = V (M ≥ M1) and (M ≥ 

M2) and … (M ≥ Mk) 

= Min V (M ≥ Mi) i=1, 2,…,k 

 

Assume that: d (Bi) = min V (Si≥ Sk) for k = 1, 2, 

..., m; k ≠ i. Then the weight vector is given by: 

W' = (d'(B1), ..., d'(Bm))
T
, where Bi(i = 1,..., m) are 

m elements. Via normalization, the normalized 
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weight vectors are given by: W = (d'(B1), d'(B2), 

..., d'(Bm))
T
,
 
where W is a non-fuzzy number. 

Si for any criteria (Table 5) was calculated: The 

results obtained are as follow: 

S1 (Geological Criteria) = (0.276, 0.466, 0.727) 

S2 (Geochemical Criteria) = (0.158, 0.276, 0.463) 

S3 (Geophysics Criteria) = (0.163, 0.259, 0.485) 

 

Si for geological alternative (Table 6) was 

calculated: The results obtained are as follow: 

S1 (Intrusive Alternative) = (0. 138, 0.249, 0.415) 

S2 (Volcanic Alternative) = (0.121, 0.201, 0.331) 

S3 (Sedimentary Alternative) = (0.077, 0.118, 0.2) 

S4 (Alteration Alternative) = (0.156, 0.266, 0.462) 

S5 (Faults Alternative) = (0.105, 0.166, 0.269) 

 

Si for geochemical alternative (Table 7) was 

calculated: The results obtained are as follow: 

S1 (Au Alternative) = (0.123, 0.217, 0.356) 

S2 (Cu Alternative) = 0.1, 0.15, 0.256) 

S3 (As Alternative) = (0.083, 0.15, 0.256) 

S4 (Ag Alternative) = (0.095, 0.168, 0.31) 

S5 (Mo Alternative) = (0.07, 0.121, 0.218) 

S6 (Pb Alternative) = (0.049, 0.087, 0.166) 

S7 (Zn Alternative) = (0.046, 0.075, 0.141) 

 

Matrix of fuzzy paired comparisons for geological 

criteria is shown in Table 6, and fuzzy evaluation 

matrix for geochemical alternatives is shown in 

Table 6. Additional reclassification of the data 

was performed according to the weight assigned. 

Weights of criteria and alternatives are shown in 

Table 8. The final prospectivity map is created 

upon integration of data for all the alternative 

layers with weights using gamma fuzzy operators 

(Figure 14). 

 
Table 5. Fuzzy evaluation matrix with respect to criteria. 

Geophysics Geochemistry Geology 
 

(1.5,2,2.5) (1,1.5,2) (1,1,1) Geology 
(0.5,1,1.5) (1,1,1) (0.5,0.667,1) Geochemistry 

(1,1,1) (0.667,1,2) (0.4,0.5,0.667) Geophysics 

 

Table 6. Matrix of fuzzy paired comparisons for geological criteria. 
Faults Alteration Sedimentary Volcanic Intrusive  

(1,1.5,2) (0.5,1,1.5) (1.5,2,2.5) (1.5,2,2.5) (1,1,1) Intrusive 
(1.5,2,2.5) (0.5,0.667,1) (1,1.5,2) (1,1,1) (0.4,0.5,0.667) Volcanic 

(0.4,0.5, 667) (0.4,0.5,0.667) (1,1,1) (0.5,0.667,1) (0.5,0.667,1) Sedimentary 

(1.5,2,2.5) (1,1,1) (1.5,2,2.5) (1,1.5,2) (0.667,1,2) Alteration 

(1,1,1) (0.4,0.5, 667) (1.5,2,2.5) (0.4,0.5,0.667) (0.5,0.667,1) Faults 

 
Table 7. Fuzzy evaluation matrix for geochemical alternatives. 

Zn Pb Mo Ag As Cu Au 
 

(2.5,3,3.5

) 

(2.5,3,3.5) (1.5,2,2.5) (0.5,1,1.5) (1,1.5,2) (0.5,1,1.5) (1,1,1) Au 
(1.5,2,2.5

) 

(1.5,2,2.5) (0.5,1,1.5) (1,1.5,2) (1.5,2,2.5) (1,1,1) (0.667,1,2) Cu 

(1.5,2,2.5

) 

(1,1.5,2) (1.5,2,2.5) (0.5,1,1.5) (1,1,1) (0.4,0.5,0.667

) 

(0.5,0.667,1) As 
(2.5,3,3.5

) 

(0.5,1,1.5) (1.5,2,2.5) (1,1,1) (0.667,1,2) (0.5,0.667,1) (0.667,1,2) Ag 

(1,1.5,2) (1.5,2,2.5) (1,1,1) (0.4,0.5,0.667) (0.4,0.5,0.667

) 

(0.667,1,2) (0.4,0.5,0.667) M

o (0.5,1,1.5

) 

(1,1,1) (0.4,0.5,0.667

) 

(0.667,1,2) (0.5,0.667,1) (0.4,0.5,0.667

) 

(0.286,0.333,0.4

) 
Pb 

(1,1,1) (0.667,1,2

) 

(0.5,0.667,1) (0.286,0.333,0.4

) 

(0.4,0.5,0.667

) 

(0.4,0.5,0.667

) 

(0.286,0.333,0.4

) 
Zn 

 

Table 8. Weights of criteria and alternatives. 

Criterion Weight Alternative Weight Final Weight 

Geological data 0.4405 

Intrusive 0.2734 0.120 
Volcanic 0.2128 0.094 

Sedimentary 0.0670 0.029 

Alteration 0.2921 0.128 
Faults 0.1547 0.068 

Geochemical data 0.3926 

Au Anomaly 0.2401 0.094 
Cu Anomaly 0.2043 0.080 

Ag Anomaly 0.1901 0.075 

As Anomaly 0.1601 0.063 
Pb Anomaly 0.0594 0.023 

Zn Anomaly 0.0264 0.010 
Mo Anomaly 0.1197 0.047 

Geophysical data 0.1668 Aeromagnetic 1 0.167 
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Figure14. Promising areas for MPM in Feyz-Abad area based on a) fuzzy method, b) index overlay integration, 

C) AHP method, and D) Fuzzy AHP. 
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3.2.6. Evaluation of prospectivity model 

Feyz-Abad area has a high potential for Au–Cu 

mineralization. Four MPM methods have been 

applied to show prospectivity maps (Figure 14). 

After generation of prospectivity models, 

locations of known mineral deposits and field 

observations have been used to evaluate the 

precision of these methods. The prospectivity map 

obtained by the integration of these models 

indicates a strong correlation between areas of 

high posterior probabilities and known Au and Cu 

deposits, indicating that the evidential layers used 

in the studied area are valid. 

Some percentages of favorable areas are located 

close to the Tannurjeh and Kuh-e-Zar deposits 

that are well-known mineral deposits. 

C–A fractal model, as proposed by [29], was 

applied to classify the weighted maps. Thresholds 

were obtained for creating classified maps, and 

then the models were evaluated by locations of 

known mineral deposits in prediction-area plots. 

In the P-A plot, the cumulative percentage of 

known occurrences predicted by integration 

evidential classes and their corresponding 

cumulative occupied areas (with respect to the 

total studied area) are plotted versus the 

prospectivity values. Thus the prediction ability of 

the evidence layer and its ability to delimit the 

studied area for further exploration are evaluated 

in a scheme [30]. 

Comparison of the prediction rates in the P-A 

plots (Figure15) shows the importance of 

analyzing the predictability of prospectivity 

models. 

The intersection point in the P-A plot (Figure 15a) 

of the continuous fuzzy prospectivity model 

shows 80% of the known Cu occurrences 

predicted in 20% of the studied area, while the 

intersection point in the P-A plot (Figure 15b) of 

the logic fuzzy prospectivity model shows 75% of 

the known Cu occurrences predicted in 25% of the 

studied area. 

The intersection point in the P-A plot (Figure 15c) 

of the AHP prospectivity model shows 60% of the 

known Cu occurrences predicted in 40% of the 

studied area, and the intersection point in the P-A 

plot (Figure 15d) of the AHP-fuzzy prospectivity 

model shows 82% of the known Cu occurrences 

predicted in 18% of the studied area. 

The intersection point in the P-A plot (Figure 15e) 

of the index overlay prospectivity model shows 

70% of the known Cu occurrences predicted in 

30% of the studied area. 

Comparison of the presented data demonstrates a 

higher efficiency of the prospectivity models 

generated using AHP fuzzy and continuous 

weighted fuzzy integration over other 

prospectivity models. 

4. Discussion 
The predicted regions of the index overlay and 

fuzzy methods are similar in distribution but the 

fuzzy result shows a more favorable area. AHP 

was applied successfully in this work with the 

consistency rate being equal to 0.01, which 

represents a very good value for the evaluation of 

the importance of each criterion to the other. 

Fuzzy AHP also has a result comparable with the 

fuzzy result. 

The prediction results of these studies provide a 

prospecting direction for this region. The result of 

integrating the data is a map depicting the 

favorable area for exploring Au-Cu deposits 

(Figure 14). Based on this work, there are three 

strong anomalies of Au-Cu exploration in the east 

and west of the Feyz-Abad sheet (Figure 14). The 

legends show the favorability values for the areas. 

It must be mentioned that for using this method, 

due to the different geochemical behaviors of 

some elements, it is better to produce different 

maps based on the geochemical characteristics of 

elements and different types of ore deposits 

related to these elements. In the promising map 

for gold, the area for placer gold exploration is not 

visible because it does not depend on rocks and 

faults that were given values in this model. 

As demonstrated by [29], the parameters of the 

intersection point of the two curves (prediction 

rate and occupied area curves) in the P-A plots are 

used to evaluate and weight the maps. In the P-A 

plot, if the intersection point shows a greater 

prediction rate in comparison with the P-A plot of 

other maps, it means that the former represents a 

smaller area containing a larger number of 

mineral deposits. The parameters of the 

intersection points in the P-A plots of the 

integrated maps are shown in Table 9. The order 

of the prediction rate of the models generated 

using different MPM methods is: 80% for 

continuous weighting approach (continuous fuzzy 

logic); 80% for fuzzy AHP; 75% for fuzzy logic; 

70% for index overlay; and 60% for AHP. Based 

on Table 9, integration from continues fuzzy and 

fuzzy AHP methods have the best results for 

prospecting the deposit-type. 
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Figure 15. P-A plot for prospectivity model generated by integration of A) continuous fuzzy, B) logic fuzzy, C) 

AHP, D) fuzzy AHP, and E) index overlay. 

 
Table 9. Extracted parameters from intersection point of P-A plots. 

Integration model Prediction rate (%) Occupied area (%) 

Continuous fuzzy 80 20 

Fuzzy 75 25 

AHP 60 40 

Fuzzy AHP 80 20 

Index Overlay 70 30 

 

The prediction rate of the prospectivity model 

generated using the continuous weighting 

approach and fuzzy AHP is around 80%, the 

highest value compared to other models generated 

in this work. 

Excluding continuous fuzzy methods, all other 

mentioned methods are knowledge-driven MPM. 

In knowledge-driven methods, the analyst’s 

judgments are used in assigning weights. Thus 

most models generated by these methods carry 

exploration bias and random error. In these 

methods, the analyst changes the weights until a 

model with the highest prediction rate of mineral 

deposits in areas with some known mineral 

deposits is obtained. Furthermore, in green-fields, 

there is no agreement in defining evidential 

weights. Thus every analyst can assign his 

arbitrary weights to exploration features, which 

bears exploration bias as well. 

On the other hand, the continuous fuzzy MPM 

method is a powerful approach by which the 

exploration bias including systematic and random 

errors are avoided. This is because the method 

does not use the location of known mineral 

deposits (such as data-driven MPM) or the 

analyst’s judgments (i.e. knowledge-driven MPM) 
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in assigning weight of evidence data. Thus it can 

be used for both green-fields and brown-fields. 

The continuous fuzzy model is the best one in the 

studied area because it is bias-free and can be 

used to generate reliable target areas. 

5. Conclusions 

In this work, various GIS techniques of generating 

maps were evaluated to better understand the 

geochemical anomalies and mineral potentials 

within Feyz-Abad area of the Lut block, eastern 

Iran, in order to indicate the best target for more 

mineral exploration activities. For that purpose, 

the following layers were used: (1) lithology, (2) 

alteration zones, (3) density of fault, (4) 

geochemical anomaly of indicator elements, and 

(5) air-borne magnetic anomaly. 

Five knowledge/data-driven models were 

practiced in the current research work. In the 

index overlay method, all weights were calculated 

within 1-10 ranges, both for layers and data 

within. In fuzzy and fuzzy continuous integration, 

the features dataset are categorized in fuzzy order 

from 0 to 1. Then the relative importance with 

AHP was calculated within the [1, 9] range. In 

fuzzy AHP, a combination of AHP score and 

fuzzy method were used. The classes were 

assigned with new weights to evaluate their 

importance for prospecting the deposit type. 

The index overlay method is very simple and fast 

but the result is not very different from the other 

methods. Fuzzy and fuzzy AHP both integrate 

fuzzy mathematics into weight calculation and 

involve three-step data processing, weight 

calculation, and layer integration. However, 

weight calculation using fuzzy is easier than using 

fuzzy AHP based on triangular fuzzy numbers. On 

the other hand, in fuzzy AHP, expert scores might 

need to be adjusted to the probability of CR ≤ 0.1, 

which will evaluate relative scores. Field 

investigation showed that the final result could 

better match the known deposits in the Feyz-Abad 

area. 

Based on the basic spatial analysis method, 

around 20% of the total studied area was selected 

as suitable for more exploration. In general, the 

majority of a suitable area was located in the north 

and NW of the Feyz-Abad region. According to 

the available data and field observation, the results 

of the index overlay method are similar to those 

for fuzzy, AHP, and fuzzy AHP integration. 

While the other methods generate relatively 

similar results, the continuous fuzzy model seems 

to be the best fit in the studied area because it is 

bias-free and can be used to generate reliable 

target areas. 
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 چکیده:

 محاور  دانا   هاای  روش از برخی ر،یاخ های سال در نیزم علوم به مربوط مسائلسیستم اطلاعات جغرافیایی در  سازی مدل کارگیری  به آمیز موفقیت جینتا اساس بر

 .کاار گرفتاه شاد   ه با ( در ایان تحقیاق   رانیا ا شار   شمال) آباد فیض در منطقه یامقیاس ناحیه در مس و طلا یسازیانک ویژه  بهو  امیدبخ ی مناطق معرف یبرا

 روش پانج  ،تحقیاق  نیا ا در. کناد می بندی رده ات بعدیاکتشاف یبرا را نظر مورد دبخ یام طقامن که است یامرحله چند ندیآفر کی پتانسیل معدنی سازی مدل

 یهاا نقشاه ، منظاور  نیا یبرا. است هگرفت قرار سهیمقا موردنشانگر، تحلیل سلسله مراتبی و تحلیل سلسله مراتبی فازی  های وزن ،پیوسته یفاز ،یفاز شامل ادغام

 و آهان  دیاکسا  راتییا تغآلتراسیون،  استخراج یبرا لندست ریتصاو. شد ساختهمکانی  داده گاهیپا کی و آوری جمع کیزیژئوف و ییایمیژئوش هایداده ،یشناسنیزم

  اسیا مق در کیا تیلیپروپآلتراسایون   و تیا کلر ت،یا نیکائول، اکساید سیلیسایم   یهاا شااخ   اساتخراج  یبرا استر ریتصاو و ها گسل و یخطهای ساختار ییشناسا

گاذاری   ارزش. ندشاد  پتانسایل معادنی تلفیاق    ساازی  مدل مختلف ایه روش با کیزیژئوف و ییایمیژئوش ،یشناسنیزم یهاداده. گرفت قرار استفاده مورد یامنطقه

 اسااس  بار  و مشاخ  شاد   آبااد ضیفا  منطقاه  در اصلی یاکتشاف ناحیه سه ل،یتحل نیا اساس بر. مشخ  شدند استدلالی توابع ای و یتخصص دان  توسط ها وزن

 هاای  روش. مفید واقاع شاود   ندهیآ های اکتشافیجستجو یبرا تواندیم گرفت که قرار تائیدپتانسیل معدنی مورد  سازی مدل صحت و دقت نتایج ،یدانیم مشاهدات

 مطالعاه  ماورد  منطقاه  در روش ترین مناسب پیوسته یفاز سازی مدلروش  که رسدیم نظر به دهند ولیرا نشان می یمشابه نسبتاً جینتا پروژه نیا در شده یابیارز

 .ردیگ قرار استفاده مورد اتکا قابل امیدبخ  مناطق مشخ  کردن یبرا خوبی  به تواندیم وشود داوری میو یا پی  مانع اختلال رایز است

 .آباد فیضنشانگر،  های وزنپتانسیل معدنی، فازی، تحلیل سلسله مراتبی،  سازی مدل کلمات کلیدی:

 

 

 

 


