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Abstract 
The Shahr-e-Babak district, as the studied area, is known for its large Cu resources. It is 
located in the southern side of the Central Iranian volcano–sedimentary complex in SE 
Iran. Shahr-e-Babak is currently facing a shortage of resources, and therefore, mineral 
exploration in the deeper and peripheral spaces has become a high priority in this area. 
This work aims to identify the geochemical anomalies associated with the Cu 
mineralization using the Spectrum–Area (S–A) multi-fractal and Wavelet Neural 
Network (WNN) methods. At first, the Factor Analysis (FA) is applied to integrate the 
multigeochemical variables of a regional stream sediment dataset related to major 
mineralization elements in the studied area. Then the S–A model is applied to 
decompose the mixed geochemical patterns obtained from FA and compare with the 
results obtained from the WNN method. The S–A model, based on the distinct 
anisotropic scaling properties, reveals the local anomalies due to the consideration of the 
spatial characteristics of the geochemical variables. Most of the research works show 
that the capability (i.e. classification, pattern matching, optimization, and prediction) of 
an ANN considering its successful application is suitable for inheriting uncertainties and 
imperfections that are found in mining engineering problems. In this paper, an 
alternative method is presented for mineral prospecting based on the integration of 
wavelet theory and ANN or wavelet network. The results obtained for the WNN method 
are in a good agreement with the known deposits, indicating that the WNN method with 
Morlet transfer function consists of a highly complex ability to learn and track 
unknown/undefined complicated systems. The hybrid method of FA, S–A, and WNN 
employed in this work is useful to identify anomalies associated with the Cu 
mineralization for further exploration of mineral resources. 

1. Introduction 
One of the most important aspects in the field of 
mineral exploration and environmental studies is 
to define and separate anomaly from the 
background [1, 2]. The separation of geochemical 
anomalies from the background has a profound 
influence on the analysis of geological evolutions 
and mineralization processes [3, 4]. Since 
geochemical elements provide important and 
direct clues related to the presence of mineral 
deposits, the geochemical anomalies play a 
significant role in mineral exploration [5, 6]. 

Moreover, the delineated anomalies are efficiently 
used in more advanced exploration-focused 
modellings such as GIS-based prospectively 
mapping [3, 7, 8]. 
A geochemical anomaly is a region where the 
concentration of a specific element is greater than 
a certain threshold value [9, 10]. It occurs by 
various natural processes related to different 
geological events such as tectonics and 
mineralization [11, 12]. Geological phenomena 
are inherently complex, and many features show 
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that several processes have taken place, 
overprinting each other, and crafting one 
another’s present appearance. It is considered as a 
simple feedback system, in which at least a part of 
the process output turns into the input of the same 
or a different process within the geological 
sequence of events [13-17]. Geochemical 
distributions are no exception, and formation of 
the geochemical anomalies often indicates the 
retread of the former chemically anomalous 
volumes of rocks, in which the efficiency of the 
processes themselves such as the supergene 
enrichment of the ore deposits is enhanced. This 
leads to very complex distribution patterns of the 
chemical elements within the crust or even on the 
earth’s surface [18]. Therefore, areas with 
disparate anomalies (or baseline) and backgrounds 
demonstrate a mixed pattern due to the 
superposition of different geological processes or 
events. According to the mentioned issues such as 
importance of isolating the geochemical 
anomalies and the complexity of geochemical 
patterns, the main challenge for exploration 
geochemists is to apply transparent and robust 
geochemical exploration techniques for 
decomposing mixed geochemical patterns and 
mapping. 
In order to separate the geochemical anomalies 
from the background, emerging computational 
geoscience methods have been developed in the 
recent years within extensive and systematic 
studies. The fundamental requirement of 
geochemical data processing is to determine the 
threshold to separate anomalies from the 
geochemical background and then delineate the 
mineralized areas or distinguish the anthropogenic 
and natural sources of the materials [19, 20]. In 
general, separation of geochemical anomalies 
from the background consists of the following 
aspects: frequency distribution, spatial correlation 
and variability, geometrical characteristics of the 
anomalies, and scale of independence properties 
[5, 6]. Based on the number of utilized thresholds 
in the studied area, the techniques are classified 
into two categories: (i) hard threshold techniques 
such as mean plus two or three times of a 
variable’s standard deviation, and (ii) soft 
threshold techniques such as spectrum and area 
model (S-A model) [21]. On the other hand, 
according to the frequency and spatial 
distributions, the methods are broadly categorized 
into non-structural (frequency-based), statistical, 
structural (spatial frequency-based), and spatial 
[22-25]. Statistical methods such as histograms 
and Q-Q plots [26, 27], probability graphs [19, 22, 

28], exploration data analysis (EDA) [29, 30], 
box-plots [19, 31, 32], mean±2SD (Standard 
Deviation) [20, 33], median+2MAD (Median 
Absolute Deviation) [19, 33], fence method [31, 
33], and multivariate analysis methods [3, 34-36] 
are primarily concerned with the frequency 
distribution of the element concentration values 
and relations between multiple variables. These 
methods are regarded as non-spatial statistical 
tools in which the spatial information and the 
spatial autocorrelation structure of the 
geochemical data are neglected. Statistical 
methods are sufficient in separating the 
background populations and anomalies within 
simple geological settings. However, their 
efficiency is limited in complex geological areas, 
where different geological processes coincide 
spatially and temporally to form complex 
geochemical distributions [37, 38]. Due to that, 
applying the traditional methods to determine 
threshold values leads to an inaccurate 
identification of geochemical anomalies. 
Therefore, the spatial models are developed for 
mapping geochemical anomalies. These methods 
such as moving average technique [39], 
conditional simulation [39], Fourier filtering [10], 
wavelet filtering techniques [40], spatial factor 
analysis, [41] and spatial U-statistics [37] consider 
both the spatial correlation and variability within 
neighboring samples in addition to the 
concentration value frequency distributions and 
correlation coefficients. The spatial methods are 
effective in solving problems but where there is an 
extensive overlap between the background and 
anomalous values or weak anomalous values are 
hidden within the strong variance of the 
background, the applicability of these methods are 
limited [8, 42]. Anomalous patterns caused by the 
mineralization processes are highly complex 
regarding their spatial and frequency properties. 
The proper quantification of these spatial and 
spectral properties is essential to identify weak or 
complex anomalies. 
Since Mandelbrot has expressed the concept of 
fractals more than two decades ago [43], the 
fractal and multi-fractal models have been applied 
to physical and chemical quantities with 
geometrical support. Examples include box 
counting model [43, 44], Concentration–Area 
model (C–A) [23, 24, 37, 45], Spectrum–Area  
(S–A) model [46, 47], Multi-fractal Singular 
Value Decomposition (MSVD) [11, 12, 48], 
Concentration–Distance (C-D) model [9], 
Number–Size (N-S) model [1, 4, 49], singularity 
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mapping technique [3, 50], multi-fractal model 
[51-52], and many other applications. 
As mentioned earlier, many geological 
phenomena such as mineralization and 
geochemical dispersion patterns are inherently 
complex and exhibit high variations and strong 
non-linearity over a wide range of spatial scales 
[53]. Furthermore, there is a non-linear and 
complex relationship between the geochemical 
variables and the mineral resources [38]. 
Understanding these relationships leads to more 
efficient mineral exploration. Lots of research 
works have shown that ANN, considering its 
successful application and ability to classification, 
pattern matching, prediction, and data mining, is 
capable of addressing the inherit uncertainties and 
imperfections found in exploratory geochemical 
problems [38, 54-55]. Moreover, ANN has a 
significant ability to find the complex spatial 
relationship between the different geochemical 
variables and also between the variable and 
occurrence/deposit location. 
The Shahr-e-Babak district, located in SW Iran, is 
known for its large Cu resources, yet is currently 
facing a shortage of the mentioned deposit. The 
geochemical surface and geological/tectonic 
setting of Shahr-e-Babak is complex. In this work, 
a hybrid approach involving the factor analysis 
(FA) and a spectrum–area (S–A) fractal model 
aided by the wavelet neural network (WNN) was 
applied to separate the mixed geochemical 
anomalies associated with the Cu mineralization 
based on the stream sediment data in the  
Shahr-e-Babak district. The main goals of this 
work were to characterize the Cu-related element 
associations, identify the geochemical anomaly 
patterns, and examine the non-linear relationships 
between the geochemical variables and mineral 
resources by the proposed methodology that 
provides vectors to mineral resource exploration. 
This paper is organized as what follows. In 
Section 2, the studied area is investigated 
according to the regional geology, structural 
geology, and geological setting. In Section 3, the 
geochemical dataset and statistical calculations 
are described. An overview of the methods, their 
principles, advantages, and limitations are 
described in Section 4. The results obtained are 
discusses in Section 5. Finally, in Section 6, 
conclusions are presented. 

2. Description of studied area 
The studied area is located in the southern side of 
the Central Iranian Volcanic Sedimentary 
Complex (Iran). The NE part of the area is 

mountainous. It composes of Paqaleh range in the 
east, prominent volcano of Kuh-e-Mosahim in the 
central part, and Narkuh in the NW area. The 
Dasht plain of Shahr-e-babak (Dasht-e Yekkeh 
Baneh) with an altitude between 1800 and 2000 m 
is spread in the south and SW of this area. The 
drainage pattern is centrifugal in the mountains 
and mostly parallel in the Dasht plain. The most 
important watercourse of the area is Rud-e Kang, 
located at the west side. The prevailing part of the 
sheet territory is drained to SW [56]. Regarding a 
regional Cu potential analysis in the  
Shahr-e-Babak district, the studied area was 
chosen as a high mineral potential. This region 
contains many mineral occurrences, while the 
geological, geochemical, and geophysical survey 
data is available. 
The geological map of the studied area is shown 
in Figure 1, which is based upon the geological 
mapping carried out by the Yugoslavian group in 
1970s. The oldest units are Cretaceous sediments 
located at the northernmost part of the sheet 
(Cenomanian-Turonian flysch often with 
bioglyphs) and colored mélange formation in the 
southern side [56]. 
The flysch sediments of the Eocene age occurred 
in the core of the denuded open-anticline axis 
running NW-SE in the northern part of the studied 
area. The Eocene volcanic-sedimentary is the 
most significant geological unit in the area, which 
is composed of 80% of pyroclastics, 10% of lava 
flows, and a remaining 10% of sediments [56]. 
This huge volcano-sedimentary sequence (at least 
with a thickness of 15 Km) is divided into the 
Bahr Aseman, Razak, and Hezar complexes by 
Dimitrijevic (1973) [57]: 

 The Lower Eocene Bahr Aseman complex 
begins with several meters of basal arenites, 
Pyroclastics, rhuodacite, trachyandesite, andesite, 
and rhyolite flows. 

 The Razak complex overlies the Middle 
Eocene sedimentary sequence. It is divided into 3 
units. The lower and upper volcanic units are 
mainly basic, while the middle one is acidic. 

 The Hezar complex represents the 
youngest phase of Eocene volcanic activity. It is 
composed of rapidly alternated andesite-basalt, 
andesite, and rhyolite lava flows. 

This sequence in intrusions dated to Miocene 
(probably in the time span of uppermost 
Oligocene to Upper Miocene). Igneous rocks are 
categorized into two units [57]: 

 Granodiorite rocks of Jebal Barez type 
(granite, granodiorite, quartz diorite, monzonite, 
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and syenite), which are represented by the Chenar 
massif and several smaller intrusions. 

 Kuh-e-Panj type consists of sub-volcanic 
rocks of a porphyritic character and a strong 
diversity in composition (quartz diorite, diorite, 
dacite, etc.). The volcanic necks determined as 
“dacite and andesite” in the area also belong to 
this type. 
The activity of the Kuh-e-Mosahim central 
volcano started regarding the pyroclastic 
explosion and continued with deposition of a 
predominantly pyroclastic material with only 
several andesite lava flows. Small diorite bodies 
and dykes are cropped out in strongly altered 
rocks in the caldera. 
Numerous dykes with NW-SE strike occurred in 
the area. The N-S and E-W strikes were 
predominant in the northern and eastern parts of 
the studied area, respectively. According to some 
contacts, the dykes belonged to Eocene up to the 
youngest volcanic activity of the Pliocene. The 
composition of the dykes is very variable but the 
dacite and andesite dykes are prominent [56]. 
Regarding the structural geology, the position of 
Eocene and Cretaceous flysch in the north-center 
part of the studied area can be interpreted as the 
core of “open” anticline in regional scale. The 
Dehno fault separates the Eocene flysch and 

volcanics in the southwestern flank. The parallel 
zone of weakness about 10 km southwestward 
confirmed by the airborne measurements 
(Vukasinovicm S., Aeroradiometric map, in [57]) 
implicates anomalous readings of scintillometric 
measurements. The Miduk district, the center 
(caldera) of Kuh-e-Mosahim volcano, and Chenar 
granitoid massif are located in this zone [56]. 
The northern part of the studied area is subjected 
to hydrothermal copper and subordinate lead 
occurrences. The Lachah occurrence is of 
porphyry copper type, which includes Cu 
carbonates, chrysocolla, and limonite in the zone 
of superficial alterations together with primary 
pyrite and disseminated chalcopyrite. Cu 
mineralization of the vein type occurs at Chah 
Massi with pyrite, chalcopyrite, and galena as 
well as the Chehel Dokhraran area (quartz veins 
containing magnetite and malachite), where weak 
Cu disseminations also occurred. There is a 
hydrothermally altered zone with E-W trending on 
the southern slopes of Kuh-e-Masahim. A 
mineralized NNW-SSE fault zone is located in 
this part similar to the fault zone located in the 
south of the Kuh-e-sara. The Cu and Pb 
mineralizations are observed in these zones. The 
occurrences in the region are concerned with the 
Neogene volcanism [56]. 

 

 
Figure 1. The Urumieh–Dokhtar volcanic belt and associated Cu occurrence in Iran, and simplified geological 

map of the studied area [57]. 
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3. Geochemical dataset 
Geochemical surveys play an important role in 
geoscience investigations in both the mineral 
exploration and environmental monitoring 
aspects. Field investigation includes  
photo-geological study, proper geochemical 
mapping by collecting samples, scintillometric 
measurements, and preparation of the collected 
samples at field base. The main goal of the  
photo-geological study is to design an optimum 
distribution of the samples and cover all 
catchment areas by an appropriate sampling grid 
size for the subsequent data processing using the 
KOMBI and PASIANS methods. 
The density of the sampling is derived considering 
the morphological and geological features, and 
drainage pattern in the studied area. Projected 
sampling density (1 sample per 4 square 
kilometers in average) generally corresponds to 
the pre-Quaternary units, as shown in Figure 1. 
About 604 stream sediment samples of the −80 
mesh (0.18 mm) fraction were collected in the 
studied area; the samples were analyzed for 44 
elements by the ICP-MS method. Based on the 
mineralogical, geological, and geochemical 
results, it was found that the case study was 
suitable for the mineralization of Cu. A suggested 
method for exploration is to use the other 
elements involved in the host rock ore-forming 
process or developed in the host rocks at the time 
of ore formation, known as pathfinder elements. 
Therefore, the concentrations of Cu, As, Sb, Co, 
Mo, Sn, Ba, Zn, Pb, Cr, Ni, W, and B within these 
samples were considered since these elements 
represented the combination of mineralization in 
this area. The statistical results of these elements 

are presented in Table 1. According to this table, 
concentrations of the elements represent high 
skewness values, which indicate the presence of 
the outliers within the data and their non-normal 
distribution. The quantile-quantile (Q-Q) plot is 
commonly used to determine the nature of data 
distribution (normal or log-normal) and recognize 
different geochemical populations [58]. The Q–Q 
plot of a uni-element data is applicable to define 
the population break points. The individual raw 
data is transformed logarithmically to explore 
whether the data is log-normally distributed. The 
Q-Q plots of the ln-transformed data (Figure 2) 
show that the majority of the values are 
distributed as log-normal functions, while a small 
number of high values follow a Pareto 
distribution. Therefore, the assumption of normal 
or log-normal distribution of the sample values is 
not effective in dealing with singular values. In 
fact, some of the values, especially extremely 
large ones, satisfy fractal or multi-fractal 
distributions. Hence, the distributed patterns of 
these geochemical data imply that the studied area 
has undergone multiple geological processes 
throughout the geological history, which leads to 
complex ore-forming processes [59, 60]. 
Therefore, it is appropriate to use the multi-fractal 
analysis to study the distribution of elements and 
assess the potential resources in this area. The 
extremely inhomogeneous distributions of Pb, Sb, 
and W are indicated regarding the larger 
coefficient of variation (CV) values for these 
elements. This means that the values for these 
elements are not widely dispersed, and high 
values are more likely to concentrate proximal to 
the ores. 

 
Table 1. Statistical parameters of elements in stream sediment samples (raw values). 

 Zn Pb Cr Ni Cu As Sb Co Sn Ba W B Mo 
Number of samples 604.0 604.0 604.0 604.0 604.0 604.0 604.0 604.0 604.0 604.0 604.0 604.0 604.0 

Mean 88.4 29.7 107.8 67.2 56.3 17.6 7.5 21.9 5.5 517.9 33.2 33.1 1.9 
Median 71.0 14.0 87.5 57.0 43.0 15.0 4.0 18.0 5.0 513.5 6.0 28.0 2.0 
Mode 48.0 8.0 70.0 22.0 32.0 15.0 1.0 10a 5.0 1200.0 6.0 2.0 2.0 

Std. deviation 71.2 56.9 77.7 62.2 45.8 11.4 9.1 13.6 2.4 237.1 99.9 22.9 1.1 
Variance 5071.5 3238.9 6043.8 3874.7 2093.2 129.4 82.8 185.6 5.5 56195.5 9989.4 526.0 1.2 

Coefficient of 
variation 80.5 191.8 72.1 92.6 81.2 64.5 121.4 62.3 43.0 45.8 301.2 69.3 57.3 

Skewness 4.7 7.4 2.1 8.2 3.3 6.6 3.1 1.3 6.6 0.6 5.0 1.6 3.5 
Kurtosis 37.6 85.4 6.9 130.4 15.7 54.2 13.7 2.2 55.1 0.6 31.5 4.2 20.8 
Range 912.0 868.0 602.0 1109.0 380.0 125.0 82.0 85.0 28.0 1125.0 994.0 163.0 11.0 

Minimum 2.0 2.0 8.0 2.0 11.0 15.0 1.0 2.0 5.0 75.0 6.0 2.0 1.0 
Maximum 914.0 870.0 610.0 1111.0 391.0 140.0 83.0 87.0 33.0 1200.0 1000.0 165.0 12.0 

Percentiles 

5 28.0 5.0 29.3 9.0 19.0 15.0 1.0 7.0 5.0 144.3 6.0 2.0 1.0 
25 51.0 9.0 55.0 30.0 31.0 15.0 1.0 12.0 5.0 356.5 6.0 17.0 1.0 
50 71.0 14.0 87.5 57.0 43.0 15.0 4.0 18.0 5.0 513.5 6.0 28.0 2.0 
75 104.0 23.0 134.0 91.0 63.8 15.0 10.0 28.8 5.0 651.0 6.0 44.0 2.0 
95 189.5 127.8 254.0 158.8 137.8 33.0 25.8 48.8 9.5 927.5 244.5 76.8 4.0 
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Figure 2. Q–Q plots of a) log Ba, b) log As, c) log Cu, d) log Sb, e) log Zn, and f) log Pb. The non-log normal 

distribution of the elemental concentrations are shown. The majority of the values distribute as a log-normal 
function, while a small number of high values follow a Pareto distribution. 

 
4. Methods 
In order to delineate the anomalies, the following 
geochemical processing methods were applied. 

4.1. Factor analysis (FA) 
According to the geological perspective, to obtain 
clues of existence of geological bodies, element 
relations are preferred over the single ones [61, 
62]. In order to achieve the geochemical 
signatures of various element associations (i.e. 
integrated geochemical anomalies), correlation 
coefficient matrix based on FA is employed to 
integrate the singularity indices of geochemical 

elements associated with the mineralization 
processes. 
FA is one of the most popular methods of 
multivariate data analysis that has been proved as 
a powerful implement to visualize  
high-dimensional data in lower-dimensional 
spaces based on variance and covariance matrices. 
It is a practical tool to combine several correlated 
variables into a single one, and also reduce the 
dimensionality of datasets into uncorrelated 
principal components based on the covariance or 
correlation of variables that represent the  
inter-relationships among the multi-dimensional 
variables [19, 62]. 
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A large set of geochemical variables are combined 
in few factors based on the method. The elemental 
concentration dataset is separated into several 
subsets, represented by different factors in FA. 
Factors are representative of the geological and 
mineralization processes that cause the correlation 
among these variables [61, 62]. 
There are four stages in FA: (i) Data is collected 
and a correlation matrix is estimated for the 
variables, (ii) Factors related to the correlation 
coefficients of the variables are extracted from the 
correlation matrix, (iii) Factors are rotated in order 
to maximize the relationship between the 
variables and factors, and (iv) Factors are scored 
to observe the position of the variables [63]. In 
this work, the Varimax rotation was employed to 
analyze the geochemical variables. A simple 
solution in Varimax means that each factor has a 
small number of large loadings and a large 
number of zero (or small) loadings. This fact 
simplifies the interpretation, as following a 
varimax rotation, each original variable tends to 
be associated with one (or a small number) of the 
factors, and every factor represents only a small 
number of variables. Formally, varimax finds a 
rotation of the original factors to maximize the 
variance of the loadings [63]. 
The classical approach for FA is to calculate the 
variability through the empirical variance. This 
approach is essentially based on computation of 
the eigenvalues and vectors of the sample 
covariance or correlation matrix. Therefore, its 
results are extremely sensitive to the presence of 
even a few atypical observations in the data. The 
outliers artificially increase the variance in an 
otherwise uninformative direction, which is 
determined as a principal component (PC) 
direction [62]. 
The eigenvectors do not represent the actual 
physical states properly since they are not aligned 
close to the local data clusters. Consequently, if 
the outliers are presented in the data, the classical 
FA results become unreliable [64]. Thus the 
rotated eigenvectors are of greater resemblance 
(with less variance) to the actual physical states 
than the un-rotated eigenvectors. The aim of FA is 
to achieve PCs that are not influenced by outliers 
through replacing the classic covariance matrix 
using reweighed minimum covariance 
determinant estimator [65]. 
In order to satisfy the decomposition, FA aims to 
seek coefficients kja ; j 1,2...p,p m  , as in Eq. 
(1): 

p
*
k kj j k

j 1
X a f g



   (1) 

where *
kX  is the normalized original variable with 

zero mean and unit standard deviation, and
k 1,2...m,  and 1 2 pf , f ,..., f  and 1 2 pg ,g ,...,g are 
the common and special factors, respectively [66]. 
Note that the common and special factors are 
independent; besides, the common factors are 
uncorrelated. If we assume n observations within 
each variable, the matrix form of Eq. (1) is as Eq. 
(2): 

X  F  g    (2) 

where X is the input data, m n,    is the factor 
loading matrix, m p , and F is the common 
factor, p n  matrix [66]. 
Moreover, the geochemical data in the form of 
proportions such as weight percent and ppm are 
typically compositional, subjected to a constant 
sum (e.g. 100%, 1,000,000 ppm). The direct 
application of the multivariate statistical methods 
such as FA to raw D-parts compositional data 
leads to biased results, and consequently, 
misleading interpretations. For example, in order 
to obtain different results of correlation analysis, 
depending on whether the whole composition or 
only a sub-composition is considered, the problem 
of spurious correlations [67] occurs. Applying an 
appropriate transformation is crucial in implying 
FA to the compositional data. A log-
transformation reduces data skewness but does not 
accommodate the compositional nature of the 
data. Aitchison (1986) has suggested several 
possible transformations from the family of log 
ratio transformations. In general, there are three 
popular log ratio transformation methods for 
opening the compositional data: additive log ratio 
transformation (alr) [67], centered log ratio 
transformation (clr) [59], and isometric log ratio 
transformation (ilr) [68], which, for a geochemical 
composition 1 DX (x ,...,x )  in the D-part 

simplex 
D

D
1 D i 1

i 1
S x (x ,..., x ), x 0, x k



     
 


(where k is an arbitrary positive constant), are 
expressed as Eqs. (3)-(5): 

1 D
1 D

D D

x xalr (y , , y ) ln , , ln
x x

 
   

 
   (3) 
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D
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x xcrl ( y ,..., y ) ln ,..., ln
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 (4) 

1

1
1

1
i

D D
D

jj i

xD iilr ( y ,..., y ) log
D i

x
 


 

 


 (5) 

where 1 Dy ,...., y  are the transformed values of 

geochemical variables 1 Dx ,....,x . 

4.2. Power spectrum-area (S–A) multi-fractal 
method 
The SA multi-fractal method has been developed 
on the basis of the fractal concentration-area 
model and the frequency filtering technique [69]. 
Fractal filtering, as a developed technique to 
decompose a map or image into different 
components, helps to separate the anomaly from 
the background or extract other meaningful 
patterns from the geochemical map using both the 
frequency and spatial information [10]. 
Geochemical patterns in the spatial domain are 
considered as superimposed signals of different 
frequencies [40]. Based on this argument, Cheng 
et al. (1999) [70] have developed the idea of the 
C-A model into the frequency domain, and 
extended the S-A model to characterize the 
spectral energy density-area relationship. 
These methods have been applied to determine 
filters in the frequency domain and separate 
regional and local variability in the geochemical 
data. These filters are used for reconstructing the 
anomaly and background patterns [46, 69, 70]. 
The advantage of dealing with fields in the 
frequency domain is that some complex 
convolution operations in the spatial domain for 
correlation analysis, filtering, and transformation 
are simplified significantly [10, 69]. 
According to the generalized scale invariance 
(GSI) viewpoint, this method has been expanded 
on the basis of the following power-law 
relationship between ‘area’, A (≥S), on the power 
spectrum plane with spectral values above a 
threshold S and the power spectrum S for fields 
with isotropic or generalized invariance scaling 
properties [70]. 

 A S S     (6) 

Different values of  are estimated by plotting 
values of log A (≥S) versus log S for various 

ranges of S. The region of spatial wave numbers 
in the x and y directions giving different ranges of 
S with constant  are defined as filters. 
As the filters created by SA in the Fourier space 
maintain the anisotropy of the power spectrum 
with the identical scaling properties, patterns 
including distinct fractal properties and anisotropy 
are obtained in the spatial domain by means of the 
inverse Fourier transform regarding the applied 
filters. 
The implication of this method includes plotting 
the values of contours and the areas enclosed by 
the contours on log-log paper. Straight-line 
segments are fitted to the values to construct 
powerlaw relations representing different  
self-similarities. The cut-off values obtained by 
intersecting these straight-line segments are 
applied to separate the contours into groups with 
similar shapes. The breakpoints separating these 
straight-line segments are regarded as cut-off 
values. 
Filters are constructed on the basis of the contours 
separated in the Fourier frequency domain by 
means of the SA method. The patterns are then 
converted into the spatial domain from the 
Fouriertransformed signals in the frequency 
domain providing decomposed patterns that 
reflect distinct underlying processes. 
The inevitable influence of abrupt edge truncation 
on the S-A model is the main disadvantage of this 
method [71]. The edge effect is due to the 
irregular shape of the studied area as a result of 
the occurrence of high values at the edge points. 
Traditional solutions to reduce the edge effect are 
too smooth for the boundary of the image prior to 
applying the Fourier transformation. There are 
lots of smoothing methods such as Zero-padding 
[47]. This simple method partly reduces the edge 
effect; however, if the image remains distorted, it 
is inefficient. Moreover, due to the complexity of 
the geoscience data such as irregular shapes and 
holes within the missing data, the results of  
zero-padding methods are generally not 
persuasive. In geoscience image analysis, the 
decay functions are suggested to handle the edge 
effect [71]. As the decay functions do not reduce 
the edge effects for an irregular studied area, a 
further study can focus on reducing the edge 
effect for the S-A model [24]. 
In the recent years, many applications of the S-A 
method have been reported in the field of 
exploration geochemistry. Afzal et al. (2012) [72] 
have developed this method in a 3D dimension 
and applied it to detect the hypogene, supergene 
enrichment, leached, and barren zones. Recently, 
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Afzal et al. (2017) [73] have used the  
fractal-wavelet analysis to transform data from the 
spatial domain to the frequency domain. 

4.3. Neural network adaptive wavelet (WNN) 
Wavelet networks are traced back to the work 
done by Daugman (1988), in which Gabor 
wavelets have been used for image classification. 
Then these networks were developed by Zhang 
(2009). Wavelet networks are considered as a 
special feed-forward neural network [74-76]. 
WNN combines the wavelet theory and the  
feed-forward neural networks. It is considered as 
an alternative to the neural and radial basis 
function networks. This property is expressed as 
any function of L2(R), which is approximated to 
any given accuracy with a finite sum of the 
wavelets. Due to complication in interpretation of 
the model by neural networks, the wavelet has 
been recently used as an alternative of these 
networks [77]. On the other hand, training 
algorithms for WNN require a smaller number of 
iterations compared to neural network. For the 
approximation property and the convergence of 
the network, the choice of activation function is 
crucial. Transfer function calculates a layer output 
from its net input. In this work, the “pure line” 
function was applied as the output layer, and the 
types of wavelet functions used for the hidden 
layer were employed as the activation functions in 
WNN. In neural net, the activation function is 
constant, and functions cannot be changed or 
adjusted during the simulation. In other words, the 
activation function for WNN is adjusted by means 
of the dilation and translation parameters. The 
WNN parameters are dilation (d), translation (m), 
and weights (a, c), while the neural net parameters 
are weights and bias. The parameters are 
optimized by the gradient method with 
momentum for neural net and WNN [78]. 

4.3.1. Structure of WNN 
In the recent years, due to the similarity between 
wavelet transform and one-hidden-layer neural 
network, the idea of integrating wavelets and 
neural net has been suggested. This has resulted in 
WNN. The wavelet theory provides effective 
guidelines for construction and initialization of the 
networks, and consequently, the training times are 
significantly decreased. Moreover, WNN provides 
a better performance by introducing two new 
parameters for the dilation (d) and translation (t) 
of wavelet transform [79]. The wavelet functions 
are classified into two categories: the orthogonal 
wavelets and the wavelet frames. As the 

orthogonal wavelets cannot be expressed in closed 
form, the wavelet frames are employed in function 
approximation and process modeling [80]. 
Wavelet frames are constructed by a mother 
wavelet, which is a prototype for generating the 
other window functions. A wavelet j(x) is 
derived from its (zjk) mother wavelet as Eq. (7): 

iN
jk

j jk jk
k 1 jk

x t
(x) (z ) z

d


     (7) 

where Ni is the number of inputs. The network 
output y is calculated by Eq. (8): 

w iN N

j j k k
j 1 k 1

y c (x) a x
 

     (8) 

The WNN architecture is presented in Figure 3. 

 
Figure 3. Structure of the WNN network composed 
of input layer, hidden layer with wavelet activation 

function, and output layer [81, 82]. 
 
Weights (a,c), translation (t), and dilation (d) are 
the adjustable parameters of WNN whose main 
aim is to update the parameters during the training 
phase;   is the set of adjustable parameters as 
below: 
 ={tjk, djk, cj, ak} and, j=1,……,Nw, k=1,……,Ni. 
The training is based upon the minimization. The 
quadratic cost function is used as shown in Eq. 
(9): 

 ( 2)

p
1j( ) y y
2

    (9) 

In this equation, y is the network output, as shown 
in Eq. (8), and yp is the process output. The 
minimization is performed by the iterative 
gradient basic methods. The partial derivative of 
the cost function with θ is calculated using Eq. 
(10): 



Shokouh Saljoughi & Hezarkhani/ Journal of Mining & Environment, Vol. 10, No. 1, 2019 

58 
 

 jk jk j k
j ye and t ,d ,c ,a 
   

   (10) 

Eq. (11) has been used for updating the 
parameters. 

t 1 t
j( )


     


 (11) 

where t and t+1 are the figuration of parameters 
and updated parameters, respectively, and   is 
the learning rate for Eq. (11). According to the 
above-mentioned reasoning based on the Scaled 
Conjugate Gradient (SCG) algorithm or 
Levenberg–Marquardt (L-M), the training 
algorithm can be summarized as the following 
steps: 
(a) Initialize the dilation and translation 

parameters according to the existing methods 
[81], and initialize node connection weights to 
random values. All these random values are 
limited in the interval (0, 1). 

(b) Input the learning samples and the 
corresponding output values to WNN. 

(c) The output values for the hidden neuron and 
output neuron are calculated using Eqs. (7) and 
(8), respectively. 

(d) Compute the instantaneous gradient vectors 
using Eq. (10). 

(e) The procedure of error back-propagation: 
parameters are adjusted using Eq. (11) to 
reduce the error, dilation, translation, and 
weights. 

(f) Returning to step (c), the process is continued 
until MSE satisfies the given error criteria. 

(g) If MSE satisfies the given error criteria, save 
the training parameters, and then the whole 
training of the WNN is completed; else, return 
to step (b). The whole training algorithm 
diagram is shown in Figure 4. 

4.3.2. Initializations of Network Parameters 
As an initial value affects the speed of the training 
and approximation to the global or local 
minimum, selecting the initial values of the 
network parameters is significant. Weight values 
are updated according to the derivative of the 
activation function at the stage of selecting the 
initial value. The functions and derivative of the 
functions cannot be equal to zero. For neural net, 
large values are not considered as the initial 
values for the parameters; otherwise, it will 
saturate, and the learning becomes slow. The 
initial values for the parameters are determined by 
means of the boundary input-output data and 

feature of activation function for neural network. 
Initialization is more important for WNN as 
wavelets own the localization feature, and are out 
of the related domain due to the initial value. On 
the other hand, the initial values obtain the local 
wavelets and very small components of the 
gradient of the cost function [81]. Therefore, a 
random selection of the initial values for dilation 
(djk) and translation (tjk) is not suitable for the 
process modeling. The center of wavelet j is 
initialized at the center of the parallelepiped 
defined by the N intervals {[pk, qk]}. For the kth 
input dilation, a, and translation, b, correlations of 
the daughter wavelets are defined as Eqs. (12) and 
(13), respectively: 

jk k ka 0.2(p q )   (12) 

jk k kb 0.5(p q )   (13) 

The initial extend of wavelets over the whole 
input domain is guaranteed by these initializations 
[81]. Figure 5 shows the plots of the mother 
wavelets accompanied by their daughters that are 
created by the mentioned procedure. 
 

 
Figure 4. Learning algorithm for WNN [82]. 
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Figure 5. Different samples of mother wavelets with their daughters [82]. 

 
4.3.3. Stop conditions for training 
Parameters of WNN are training during the 
learning phase of approximation. The desired 
function Scaled Conjugate Gradient and 
Levenberg–Marquardt methods are applied to 
adjustable parameters. Training is stopped when 
the variation in the gradient and parameters 

reaches a lower bound or the number of iterations 
reaches a fixed maximum. 

5. Result and discussion 
5.1. Results of FA 
The aim of the current work, which was 
performed on the stream sediment samples and 
assay data, was to evaluate FA in terms of the  
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Cu-related mineralization element associations. At 
First, the data for selected geochemical elements, 
i.e. Zn, Pb, Cr, Ni, Cu, As, Sb, Co, Sn, Ba, B, W, 
and Mo was transformed by ilr-transformation 
[59], which eliminated the effects of data closure. 
To explore the element associations, the results of 
FA with a varimax rotation for log transformed 
and ilr-transformed data were compared. 
For each selected dataset with the corresponding 
eigenvalues greater than 1, five factors were 
determined. The results obtained for FA are 
presented in Tables 2 and 3. The biplot of Factor 1 
(F1) versus Factor 2 (F2) for two selected dataset 
are presented in Figure 6. Biplot is a powerful tool 
to display the relationship between variables via 
loadings and observations via scores. It 
simultaneously visualizes the scores (data points 
or sample identifiers) and loadings (vectors) of 
FA. The correlation of variables was measured by 
the angle between any two vectors. Here, F1 and 

F2 were accounted for 35.7% and 35.2% of the 
total variance of log transformed and  
ilr-transformed data, respectively. F1 of the  
log-transformed data (Figure 6a) consisted of 
positive loadings from most elements, except As, 
Sb, and W, while F1 of the ilr-transformed data 
(Figure 6b) included Zn, Sn, As, Ba, B, Cu, Ni, 
Mo, Pb, and Sb. The biplot showed that the 
loading area in positive quadrant of the plot was 
more concentrated in the log-transformed data 
than the ilr-transformed data. According to the 
previous studies on ore-forming element 
correlations in metallogenic processes for various 
Cu deposits based on ore samples in the Miduk 
ore district [83], Cu element is often correlated 
with Cu, As, Mo, Sb, Zn, and Pb. The results 
obtained show that the factors obtained by FA of 
the ilr-transformed data are more meaningful in 
the context of regional mineralization in the 
region. 

 
Table 2. Loadings of FA carried out using log-transformed data. 
Element Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 

Zn 0.053 -0.172 0.763 -0.003 -0.278 
Pb 0.109 0.281 0.802 0.142 0.140 
Cr 0.658 0.477 0.276 -0.182 -0.102 
Ni 0.873 -0.102 0.118 0.059 -0.011 
Cu 0.478 0.117 0.598 0.173 .336 
As -0.004 0.334 -0.047 0.696 -0.340 
Sb -0.059 0.579 0.311 -0.183 -0.053 
Co 0.828 -0.061 -0.094 0.085 -0.031 
Sn 0.175 -0.643 0.222 -0.035 -0.129 
Ba 0.023 0.802 0.087 0.124 0.084 
W -0.096 0.110 -0.033 -0.016 0.841 
B 0.729 -0.129 0.156 0.013 -0.056 

Mo 0.089 -0.201 0.198 0.723 0.190 
 

Table 3. Loadings of FA carried out using ilr-transformed data. 
Element Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 

Zn 0.870 0.042 -0.175 -0.011 0.107 
Pb 0.894 0.099 0.102 0.060 0.038 
Cr -0.029 0.641 0.449 -0.317 -0.022 
Ni 0.054 0.753 -0.088 0.079 -0.036 
Cu 0.681 0.266 0.177 0.282 -0.200 
As 0. 366 -0.250 0.375 0.375 0.590 
Sb 0.290 0.184 0.328 -0.425 0.059 
Co -0.033 0.777 0.009 0.058 0.022 
Sn 0.016 0.234 -0.653 0.033 0.139 
Ba 0.175 -0.643 0.783 0.010 0.096 
W -0.106 -0.190 0.136 0.152 -0.783 
B 0.012 -0.723 -0.239 0.083 0.150 

Mo 0.188 0.117 0.005 0.767 -0.018 
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a) 

 
b) 

Figure 6. a) Plots of Factor 1 loadings versus Factor 2 loadings of the log-transformed data, and b) ilr- 
transformed data. The arrows represent the original elements. The direction of the arrows indicates the relative 

loadings of the variable. The angle between any two arrows is a measure of the correlation between the variables. 
 
5.2. Results of S–A 
The spatial distribution of Factor 1 obtained for 
the Inverse Distance Weighted (IDW) method 
through ArcGIS shows a mixed and complicated 
pattern (Figure 7). The patterns for F1, as shown 
in Figure 7, represent the total analyzed values in 
the stream sediment samples. These values are 
caused by overlapping processes such as 
sedimentation, volcanic activity, igneous activity, 
faulting, and mineralization. Due to the different 
natures of the mentioned processes, the related 
patterns treated as space series are distinguishable 
according to various properties such as frequency 
distribution. Distinctive frequency distribution 
and scaling property allow the S-A fractal filtering 
technique to separate the patterns according to the 
distinct self-similarity observed in the spatial 
patterns of the frequency domain. The  
Spectrum-Area (S-A) technique is used to 
decompose the mentioned mixed pattern. At First, 

the F1 map is taken into the frequency domain by 
means of the 2D Fourier transformation. 
Two components, the power spectrum density and 
phases, are obtained. The spectrum energy density 
(S) and the area (A) are enclosed by the values 
greater than or equal to the threshold for F1, 
plotted on a log-log scale (Figure 8). The S-A 
method ensures that the power spectrum value (S) 
and the area (A), as shown by the fitted straight-
line segments on the log-log axes, follow the 
power law relationships. Variant straight-line 
segments with different slopes represent various 
self-similarities, which correspond to different 
patterns in the spatial domain. For example, for 
Factor 1, four straight lines are fitted by means of 
the Least Squares (LS) method. This results in 
four ranges of power energy spectrum (S) that 
maintain distinct scaling properties of the S-A 
relation. In the case of Factor 1, the Log  
S0 = 5.1423, Log S1 = 6.3727, and  
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Log S2 = 6.8786 values define three thresholds. S 
< S2 represents anomalies and the power 
spectrum, while S > S0 corresponds to the 
background [70]. 
Furthermore, three types of fractal filters are 
constructed based on the log S–log A plot: low 
pass, high-pass, and band-pass spectral energy 
density filters. The length of the intersection 
points, as threshold S0 or S1, is defined by two 
intersecting lines on both sides of the two 
segments. The various slope of the segments 
indicates that they meet different fractal 
characteristics. Based on the log S–log A plot, 
three types of fractal filters can be defined, as 
follow: 

0
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G ( )

0 S( ) S
 

    
 (14) 
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The investigations indicate that the spectral 
energy density is inversely related to the spectral 
frequency. It has also been proved that if GA(ω) of 

the spectral energy density is less than GB(ω), the 
wave number of GA(ω) is larger than GB(ω). 
Accordingly, GA(ω) and GB(ω) correspond to high 
and low frequencies, respectively. Therefore, 
GA(ω) can be used as the high-frequency energy 
spectral density filter, and GB(ω) is the low-
frequency energy spectral density filter. GA(ω) 
and GB(ω) are considered as the anomaly and 
background filters, respectively. GC(ω) is used to 
strain out energy spectra less than S0 and greater 
than S2, and retains the spectral components 
within the interval (S2, S0). Therefore, GC(ω) is a 
band-pass filter in a specific interval. 
The resulting S-A model is influenced inevitably 
and severely by abrupt edge truncation. The edge 
effect due to the irregular shape of the studied 
area results in high values occurring at the edge of 
the studied area. The edge effect has to be 
removed in the irregular-shaped area of our work. 
In Figure 9, the edge effect for F1 is effectively 
addressed. There are various solutions to 
eliminate the edge effect [24, 71, 83], though the 
zero-padding approach is applied in this paper. 
Zero-padding is one of the most frequently used 
smoothing methods that partly reduces the edge 
effect. 

 

 
Figure 7. The geochemical map created by F1 using ilr-transformed stream sediment data (values are presented 

in ppm scale). 
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Figure 8. A log-log plot showing the relationship between spectral energy density (S) and area (A) of factor 1. 

The vertical axis represents area and the horizontal axis is the spectral energy density. Straight lines are fitted by 
means of the Least Squares (LS) method. Three breakpoints are indicated by S0 = 2.91, S1 = 2.61, and S2 = 0.8. 

 

 
Figure 9. The edge effect of Factor 1. 

 
High-frequency, low-frequency, and band pass 
filters are applied to the Fourier-transformed 
results after removing the edge effect and 
determining the thresholds. Then the inverse 
Fourier transform is implied to bring back the data 
to the spatial domain and plot the anomaly and the 
background map. The F1 anomaly and 
background maps obtained using the inverse 
Fourier transformation are shown in Figure 10. 
The promising areas of Cu mineralization are 
located in the places with high background and 
anomaly values. Also the high positive values are 
mainly within the areas related to a high 
geochemical background value, which indicates 

that the occurrence of the anomalies in high 
background areas is identifiable. 
Considering the high values of the anomaly and 
background maps, the potential mineralization 
areas are mostly located at the NW section over 
trachybasaltic and trachyandesitic lithological 
unit, which shows a strong phyllic alteration 
associated with Cu mineralization. The results 
obtained show that S–A, based on distinct 
anisotropic scaling properties, is a useful tool to 
identify the geochemical anomalies because it 
considers the spatial characteristics of the 
geochemical variables. 
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a) 

 
b) 

Figure 10. a) Anomaly and b) background maps showing promising areas of F1 using the S-A fractal model. 
 
5.3. Results of WNN 
WNN is applied in Cu mineralization in the 
studied area based on the stream sediment 
samples. A supervised Wavelet Neural Network 
(or WNN) method is used, which consists of the 
following steps: 

5.3.1. Data preparation 
Geochemical components associated with Cu 
mineralization (Factor 1) that consist of Cu, As, 
Sb, Zn, and Pb are used as the input data. At the 
beginning of the modeling process, the data is 
normalized, which helps to scale the input data 
and output, and consequently, leads to a more 
efficient prediction. Scaling the input data and 

output prior to imply ANN is very significant. The 
main advantage of the scaling process is to avoid 
the domination of the attributes in greater numeric 
ranges to those in the smaller ranges as well as to 
avoid numerical difficulties during the calculation 
[84, 85]. In order to normalize the data, different 
methods have been developed to improve the 
network training. Such methods include ‘‘the 
normalized data that is in the range of [-1 1] using 
the maximum and minimum dataset’’, ‘‘the 
normalized data using the mean and standard 
deviation of the dataset’’, and finally, ‘‘the 
normalized data in the range of [01] using the Eq. 
(17)”: 
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max min

x xX
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 (17) 

where Xnorm is the normalized data that is 
transformed, x is the normalized input data, and 
xmax and xmin are the maximum and minimum 
values of the original data, respectively [86]. In 
this work, the input data and the output are 
normalized by the mentioned formula. 
If the division is not considered properly, the 
results might be inaccurate and illogical. The 
wavelet neural network data falls into three 
categories: 1) The training data, which is definite 

and clear, and is used during the training process, 
2) The testing data, which is used after the 
training process while their target is not clear, and 
3) The validation data, which is used during the 
training process to avoid over-fitting, while it is 
not definite. In this work, all the available datasets 
were divided randomly into three distinct subsets 
consisting of the training, validation, and testing 
data. 
The proportions of each subset were 70%, 15%, 
and 15% of the whole data (Table 4). The spatial 
distribution of the extracted samples is shown in 
Figure 11. 

 
Table 4. Range of different parameters for training, testing, and validating datasets. 

Validation data (91 samples) Test data (91 samples) Train data (422 samples) Effective parameters Max Average Min Max Average Min Max Average Min 
227 54.93 11 371 60.95 16 391 55.66 13 Cu 

Parameter 
82 16.87 15 140 19.52 15 91 17.37 15 As 
44 7.19 1 83 8.70 1 63 7.30 1 Sb 
234 82.26 12 914 99.85 2 545 87.31 11 Zn 
204 27.81 2 870 41.86 2 395 27.44 2 Pb 

 

 
Figure 11. Spatial distribution of the selected samples for WNN modeling. 

 
There are different error metrics to evaluate the 
accuracy of the models including coefficient of 
determination (R2), EI, RMSE, and mean bias 
error (MBE). In addition to these indices, 
persistence index (PI) and extrapolation index 
(EXI) are also included [87, 88]. All the selected 
indices (except MBE and R2) and various error 
metrics for evaluating the hydrograph have been 
explained by Crochemore et al. (2015). R2 and 
RMSE are used in this work as the error metrics. 
R2 measures the degree of correlation between the 
observed and predicted values. A model strength 

is measured by R2 through developing a 
relationship among the input and output variables. 
The R2 values range from 0 to 1, 1 indicating a 
perfect fit between the data and the line drawn 
through them, and 0 representing no statistical 
correlation between the data and the line. R2 is 
calculated by [89]: 
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where tk and yk are the target and network outputs 
for the kth output, respectively; kt  is the average 
of the targets; and N is the total number of the 
considered events. 
RMSE indicates the discrepancy between the 
observed and calculated values. The lower the 
RMSE, the more accurate is the prediction. RMSE 
is calculated by [89]: 

N
2

i i
i 1

(y y )
RMSE

N






 (19) 

where yi is the observed data, iy  is the calculated 
data, and n is the number of observations. RMSE 
is equal to 0 for a perfect fit between the observed 
and forecasted values. R2 and RMSE for the best 
fit between the observed and calculated values, 

which is unlikely to occur, are equal to 1 and 0, 
respectively [90]. 

5.4. Modeling 
In the standard feed-forward neural networks, the 
activation function of hidden layer neurons is a 
sigmoid function. In order to increase the 
generality of performance, the activation functions 
are substituted with different daughter wavelet 
functions. This creates various WNNs; note that 
the WNN model is implemented using MATLAB. 
Different wavelet function formulas as activation 
functions are shown in Table 5. The results of the 
observed and predicted data obtained from the 
neural network adaptive wavelet (WNN) model 
are summarized in Table 6. Types of WNN 
architectures with initialization dilation and 
translation parameters are shown in Table 7. 

 
Table 5. Proposed wavelets for application in WNN. 
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Table 6. Results of observed and predicted data obtained from WNN. The best obtained network is in bold. 
Determination 
coefficient (R2)  SSE  RMSE Number of 

neurons  
Wavelet 

name  Number 
validation  test  train  validation  test  train  validation  test  train  

0.86  0.81  0.88  1.48  1.69  1.44  0.31  0.41  0.37  12  Shannon  1 
0.87  0.84  0.89  1.37  1.63  1.33  0.35  0.46  0.33  12 Mexican hat  2 
0.92 0.90 0.96 1.24 1.43 1.12 0.26 0.35 0.22 12 Morlet  3 
0.91  0.89  0.93  1.36  1.52  1.22  0.32  0.38  0.28  12 POLYWOG1  4 
0.90  0.88  0.92  1.31  1.53  1.26  0.37  0.45  0.26  12 POLWOG2  5 
0.90  0.88  0.92  1.35 1.58 1.26 0.33 0.41 0.24 12 POLYWOG3  6 
0.90  0.88  0.92  1.55 1.63 1.26 0.33 0.44 0.27 12 POLYWOG4  7 
0.88  0.86  0.91  1.63  1.58  1.29  0.36  0.48  0.28  12 POLYYOG5  8 
0.90  0.89  0.93  1.32 1.65 1.22 0.37 0.41 0.24 12 SLOG1  9 
0.90  0.89  0.93  1.42 1.55 1.22 0.34 0.37 0.27 12 SLOG2  10 
0.88  0.86  0.91  1.57 1.65 1.29 0.33 0.42 0.29 12 RASP1  11 
0.88  0.86  0.91  1.63 1.63 1.29 0.31 0.47 0.28 12 RASP3  12 

 
Table 7. Different types of WNN architectures with initialization dilation and translation parameters. 
Wavelet name Structure Dilation Translation 

Shannon 5-12-2 0.2 5 
Mexican hat 5-12-2 0.3 14 

Morlet 5-12-2 2 10 
POLYWOG1 5-12-2 10 20 
POLWOG3 5-12-2 5 10 

RASP1 5-12-2 5 20 
SLOG1 5-12-2 2 20 

 
In this work, the number of hidden layers and 
neurons were selected by repeated trials and 
estimated errors. As shown in Table 6, the optimal 
results were obtained when one hidden layer with 
12 neurons with the Morlet activation function 
was used for the training. Some of the inputted 
neurons correspond to the five inputted Cu 
mineralization indicator elements. 
Two neurons of the output layer correspond to the 
Cu deposits and the non-deposits, which are 

assigned as (1, 0). The architecture of the WNN 
model is shown in Figure 12. WNN was used to 
predict the test points after combination with the 
architecture and the saved weights as well as 
evaluating with the validation data. The results 
obtained show that all points agree with the 
expected value, while indicating a high 
classification accuracy. The predicted results 
(Figure 13) are in good agreement with the S-A 
model results. 

 

 
Figure 12. Wavelet neural network (WNN) model for Cu mineralization prediction. 
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Figure 13. Integrated map of Cu potential evaluation by means of S–A and WNN methods. 

 
The results obtained for the WNN and S-A  
multi-fractal were compared and correlated to 
specific geological particulars of the region, while 
considering the nature of lithological units, faults, 
and alteration. Cu distribution in the Shahr-e-
babak, the faults, and the alteration areas, are in 
good agreement with the results of the S-A and 
WNN models. The anomalous parts clearly 
indicate the main identified faults, especially in 
the northwestern (Miduk) side of the area that is 
comfortable with the existing structural settings 
and controls. Comparison between tectonics 
confirms the forces creating the regional stress 
field, while Cu anomalies show that faults that 
intersect the anomalies are situated near those 
structures. On the other hand, faults and elemental 
anomalies are in a proportional relationship. High 
grade elemental anomalies occurred inside and 
within the fault zones or located at faults 
intersection areas. It can be deduced that the fault 
density has a direct positive correlation with 
mineralization, especially in the northwestern 
parts of the studied area [91, 92]. 

6. Conclusions 
The decomposition of the mixed geochemical 
patterns is a challenge in prospecting mineral 
resources and environmental assessment. The 
Shahr-e-Babak district is a Cu mineralization 
prospective area that has a complicated 
geochemical surface and complex tectonic setting. 

Due to the importance of geochemical mapping in 
minimizing the cost and time of prospecting as 
well as maximizing prospecting benefit of a 
mineral exploration program, and also decreasing 
the uncertainty caused by the unknown/complex 
geochemical variables, a geochemist and 
exploration geologist has to be able to apply a 
powerful, transparent, and robust method to 
separate the anomaly from the background. In this 
work, the FA and (S–A) fractal models, with the 
aid of the wavelet neural network (WNN) were 
applied to separate the mixed geochemical 
anomalies associated with the Cu-mineralization. 
The results obtained indicate that: 

(1) Due to the effects of the compositional data 
closure, the geochemical data has to be initially 
opened before being analyzed. This is because the 
data closure problem results in spurious 
correlations or associations between the 
geochemical variables, and accordingly, 
complicates the interpretation of the various 
correlations between the same variables from 
different sub-compositions; 

(2) The hybrid method combining the FA and  
S–A fractal models is an efficient tool for 
identifying the geochemical anomalies. The 
former is used to integrate the multi-element 
concentration values associated with the  
Cu-mineralization information, and the latter is 
used to decompose the mixed geochemical 
patterns in a complex geological setting. The S–A 
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multi-fractal model, which is based upon self-
similarity and self-affinity, addresses the spatial 
characteristics of the geochemical patterns and 
reduces the geochemical noise and helps to 
identify weak geochemical anomalies; 

(3) WNN is used for a more particular 
knowledge of the non-linear relationships between 
the geochemical variables and mineral resources. 
The results obtained show that the predicted 
points are in a good agreement with the S-A 
model results; 

(4) In this work, the wavelet neural network 
was used as an alternative to the artificial neural 
networks. The WNN networks were used for 
function approximation in static and dynamic non-
linear input-output modelling of processes. WNN 
improves the performance of the trained network 
in aspects of fast convergence and robustness to 
noise interference. It also consists of a highly 
complex ability to learn and track the 
unknown/undefined complicated systems. The 
results obtained showed that the WNN network 
with Morlet transfer function obtained the best 
result to examine the non-linear relationships 
between the geochemical variables and mineral 
resources; 

(5) The results obtained from this work 
indicate that there are potential areas for the 
discovery of new mineral deposits. The favorable 
areas are in the NW of the studied area and partly 
in the NE side, which is comfortable with the 
existing structural settings and controls; 

(6) The results obtained show that the hybrid 
method, as a robust approach, is a more accurate 
alternative than the existing methodologies for 
identifying the geochemical anomalies. Therefore, 
it is suggested to be applied for geochemical 
mapping in similar problems, especially in 
polymetallic districts with a complex geologic and 
tectonic setting. 
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مساحت و  -هاي چند فرکتال طیف توان هاي ژئوشیمیایی مرتبط با کانی زایی مس توسط روش شناسایی آنومالی
 شبکه عصبی موجک در ناحیه معدنی شهربابک، کرمان، ایران

  

  *و اردشیر هزارخانی بشیر شکوه سلجوقی

رانیا ر،یرکبیام یصنعت دانشگاه ،و متالورژي معدن یمهندس دانشکده  

  21/7/2018، پذیرش 7/4/2018ارسال 

  ardehez@aut.ac.ir* نویسنده مسئول مکاتبات: 

  

  چکیده:

رسـوبی ایـران    -یفشـان  آتـش عنوان ناحیه مطالعاتی به خاطر منابع عظیم مس خود شناخته شده است. این ناحیه در بخش جنوبی کمـپلکس   ناحیه شهربابک به 
تـر و   ي عمیـق مرکزي در جنوب شرق ایران واقع شده است. ناحیه شهربابک در حال حاضر مواجه با کمبود منابع است، بنابراین اکتشاف مـواد معـدنی در فضـاها   

هاي چند فرکتـال   ي مس با استفاده از روشساز هاي ژئوشیمیایی مرتبط با کانی پیرامونی اولویت اصلی در این ناحیه است. این پژوهش قصد در شناسایی آنومالی
اي  مساحت و شبکه عصبی موجک دارد. در ابتدا، تجزیه و تحلیل عاملی براي تلفیق متغیرهاي ژئوشیمیایی چندگانه بـا دسـته داده رسـوبات آبراهـه     -طیف توان

آمـده از   دست بهمساحت براي تجزیه الگوهاي ژئوشیمیایی مختلط  -مرتبط با عناصر اصلی کانی زایی در ناحیه مطالعاتی به کار برده شد. سپس روش طیف توان
بنـدي   مسـاحت مبتنـی بـر خـواص مقیـاس      -آمده از روش شبکه عصبی موجک استفاده شد. مدل طیف تـوان  دست بهتجزیه و تحلیل عاملی و مقایسه با نتایج 

هاي شبکه عصبی  اي ژئوشیمیایی آشکار کرد. اغلب محققان نشان دادند که قابلیتهاي محلی را با توجه به مشخصات فضایی متغیره ناهمسانگردي مجزا، آنومالی
هـا موجـود در مسـائل     هاي ذاتی و کاسـتی  قطعیت آمیزش، براي عدم بینی) با توجه به کاربرد موفقیت سازي و پیش بندي، تطابق الگو، بهینه مصنوعی (یعنی طبقه

جـویی معـدنی مبتنـی بـر ترکیـب       جایگزین شبکه عصبی مصنوعی به نام شبکه عصبی موجک براي پی مهندسی معدن مناسب است. در این پژوهش، یک روش
هـاي شـناخته شـده، نشـان      تئوري موجک و شبکه عصبی مصنوعی ارائه شده است. نتایج به دست آمده از روش شبکه عصبی موجک در تطابق خوب بـا نهشـته  

هاي پیچیده تعریف نشده و نامعین دارد. روش ترکیبـی    رلت توانایی بالایی براي یادگیري و شناخت سامانهدهد که روش شبکه عصبی موجک با تابع انتقال مو می
هاي مرتبط با کـانی زایـی مـس بـراي      مساحت و شبکه عصبی موجک به کار برده شده در این مطالعه براي شناسایی آنومالی -تجزیه و تحلیل عاملی، طیف توان

 ودمند است.اکتشاف آتی منابع معدنی س

  مساحت، کانی زایی مس، شهربابک. -آنومالی ژئوشیمیایی، شبکه عصبی موجک، مدل چند فرکتال طیف توان کلمات کلیدي:

 

 

 

 


