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Abstract 
Nowadays, Barton’s Joint Roughness Coefficients (JRC) are widely used as the index 
for roughness and as a challenging fracture property. When JRC ranking is the goal, 
deriving JRC from different fractal/wavelet procedures can be conflicting. Complexity 
increases when various rankings outcome from different calculation methods. Therefore, 
using Barton’s JRC, we cannot make a decision based on the proven mathematical 
theories because each method has a different rank. Ideally, these rankings must be equal 
but, in practice, they are different for each method. To solve this problem and to achieve 
a robust and valid ranking for JRC, Condorcetand Borda count methods have been used. 
These methods have been proposed as fusion approaches. Re-ranking of JRC using 
different methods integrated with Condorcet showed confusion in ranking of the JRC4, 
JRC5, and JRC6 profiles. This ambiguity is equal to equalizing decision conditions 
about all the three at the examination of the winners, losers, and draws in pairwise 
matrices. Therefore, Borda Count was applied and resulted in robust rankings. In fact, a 
new approach for a roughness measurement is presented. A new JRC ranking called 
JRCN is introduced. This new ranking shows a lower sum of squared errors (0.00390) in 
comparison with the original JRC ranking method (0.00410) and ranked JRCN1 to 
JRCN10. Thus it is proposed to consider JRCN as a new and improved version of JRC 
rankings. 

1. Introduction 
Roughness (asperity) is a challenging fracture 
property. Generally, roughness is defined as any 
deviation of the examined surface compared to the 
situation where the surface is completely flat [1]. 
Roughness of a fracture differs in various 
directions because of the tectonic and tension 
regimes. This level of dependence increases 
uncertainty. Also the expressed values stay away 
from the non-uniqueness amounts. Inasmuch as 
for measuring roughness in the 2D space, 
sufficient high-quality data with suitable rate is 
required, and it is not easy to do calculations on 
such a space; a criterion such as the well-known 
Joint Roughness Coefficient (JRC) exemplar 
profiles is required. Considering this approach, 
the results can be considered as the most widely 
used observational method for investigating the 
effect of roughness of fracture surface. Since the 

introduction of this concept [2, 3], the procedure 
was considered and modified by scientific 
communities. The researchers presented their 
reports on how roughness might be measured  
[4-9]. 
The wavelet, variogram analysis,  
roughness-length method (root mean square), as 
well as the fractal- based methods containing 
power spectral density (PSD), height-length, 
compass-walking, and divider method have been 
nominated as the common methods used for 
roughness measuring. Because of the difficulty in 
measuring fractal dimension, numbers of 
empirical relations between JRC values and 
roughness parameters with different definitions 
have been applied [9]. Similarity-based methods 
[10-16] and Hausdorff-based method [17-19] 
were also utilized for measuring the roughness. 
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In wavelet-based methods [20], rough profiles 
were considered as a signal, and were analyzed by 
the signal processing methods. Accordingly, Lee 
et al. (1998) determined the roughness and 
morphological characteristics of the surface with 
principles based on the wavelet transform 
equations [21]. In a similar study, Josso et al. 
(2000) used the frequency normalized wavelet 
transform (FNWT) strategy for surface roughness 
analysis and characterization [22- 24]. With such 
an approach, Asadi et al. (2009) analyzed the JRC 
exemplar profiles [25]. In the same year, Grzesik 
and Brol (2009) characterized the surface 
roughness of different workpiece materials using 
the fractal-based methods and wavelet transform 
[26]. Morala-Argüello et al. (2012) used the Haar 
mother wavelet to analyze the synthetic rough 
surfaces in four different classes [27]. Also Zou et 
al. (2015) impacted surface roughness on the flow 
of fluid using the finite volume method (FVM) 
and resolving Navier-Stokes equations relative to 
non-linear fluid flow in a single fracture [28]. 
The fractal-based methods used for studying, 
characterization, and quantifying the roughness of 
surfaces have been used extensively [29-44]. The 
value of power spectral density (PSD) can be 
calculated by fast Fourier transform (FFT) in one 
dimension and complex function in two 
dimensions [45- 47]. Additionally, the fractal 
dimension can be obtained by plotting the log-log 
diagram of energy versus the wave number [48, 
49]. Jacobs et al. (2017) determined the 
quantitative characteristics of the topographic 
surface using the PSD method [50]. In the same 
year, Jain and Pitchumani (2017) analyzed the 
fractal model of rough surface to check the 
surface wettability [51]. In this regard, Mitra et al. 
(2017) studied the roughness for characteristic 
underwater micro-patterned surfaces based on the 
fractal model (Weierstrass−Mandelbrot function) 
[52]. Jain (2017) determined the fractal 
parameters using the power spectrum of the 
surface [53]. The variogram analysis method is a 
specific technique in spatial analysis [54, 55]. In 
this method, the fractal distribution is obtained 
through a variogram model and the calculation of 
the graph gradient for the relative distance of the 
pair of samples versus the variogram value in a 
log-log scale [56]. Perfect (2005) defined the 
drainage probability as the ratio of the volume of 
pore spaces to the total space using the fractal 
model [57]. Rasouli and Tokhmechi (2010) 
simulated reservoirs and provided an estimate of 
porosity using the geostatistical models based on 
fractal geometry [58]. Ojha et al. (2017) presented 

an estimation of the remaining saturation and 
relative permeability for organic-rich shale 
samples with a dual approach to the previous 
studies using the fractal-based method. They also 
intercepted the diameter of the pore size in their 
calculations [59]. Suleimanov et al. (2017) 
studied the effect of fractal dimension on flooding 
operation based on the analysis of the profile of 
oil well production [60]. In the roughness-length 
method, introduced by Malinverno (1990), the 
length of the rough profile was calculated based 
on the residual value of the root mean square 
(RMS) of a linear model. The fractal dimension 
was also obtained by plotting RMS versus 
window length in a log-log scale and calculating 
the gradient of the graph [61]. Rahman et al. 
(2004) derived roughness characteristics of rock 
mass discontinuities from the laser scanning data 
[62]. Also Arizabalo et al. (2004) utilized the 
roughness-length method, variogram analysis, and 
wavelet to analyze the wire-line logs in a naturally 
fractured limestone reservoir in the Gulf of 
Mexico [63]. In the height-length method, the 
fractal dimension to the desirable profile is 
achieved by considering a base line on the 
roughness profile and calculating the average 
height and average base length relative to baseline 
[64]. The relationship provided by Xie and 
Pariseau (1994) was later corrected by Askari and 
Ahmadi (2007), while it confirmed that the 
estimations were partly biased [65]. In the 
compass-walking method, roughness profile 
length is surveyed by considering a variable size 
of the divider. This process is performed by 
changing the length of the divider after 
completing each survey and repeating from the 
initial point similarly. Finally, fractal dimension 
will be obtained from the division of the changes 
of product of length of divider in repeated times 
relative to the lengths of divider in a log-log scale 
minus one [66]. Bae et al. (2011) added the 
remaining amount to this relation as an upgrade 
and calculated the fractal dimension of profiles 
[67]. Afterward, Li and Huang (2015) suggested a 
similar approach to measure the change of 
iterative calculation number relative to the length 
of divider in the log-log scale. These results were 
equivalent with fractal dimension (with a negative 
sign). Also they analyzed JRC using the  
height-length method [64], and the compass-
walking (divider) method [66-68]. 
In this work, roughness of profiles was calculated 
using the fractal and wavelet methods. The results 
obtained were fused using Condorcet and Borda 
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Count. As the result of this procedure, a new 
robust ranking for JRC profiles was introduced. 

2. Methodology 
In the first step and before performing any 
analysis, the roughness profiles were digitized 
(Figure 1). The flowchart of the approach 
presented in this work is shown in Figure 2. Two 
utilized procedures for roughness calculation will 
be introduced, and also Condorcet and Borda 
Count, which are data fusion methods, will be 
explained. 

2.1. Digitizing JRC profiles 
The JRC profiles were digitized with a lag 
distance of 0.02 mm. Practically, each profile was 
considered as a signal, and the amount of “Y” axis 
for any “X” was measured (Figure 1). More than 
5200 points were achieved for each profile, and 
the number of data was found to be 54710. This 
data was considered as the digitized JRC profile 
(Figure 1). 

 

 
Figure 1. The process of digitizing JRC profiles. (In order to reveal the roughness changes, the profiles were 
rescaled in two axes (squeezed in the x-axis and stretched in the y-axis) but the calculations were done in the 

original scale.) 
 
2.2. Fractal-based roughness calculation 
In order to perform the fractal-based method, the 
fractal dimensions of the digitized JRC profiles 
(Figure 3) were calculated. Supposing the number 
of repeating of the survey is 푁 (Figure 3), the 
fractal dimension of the desired profile can be 
obtained by plotting 푁푟 versus 푟 in a log-log 
scale; 푟 is the length of divider (Equation 1-first 
method) [66]. 

log( )1
log( )


 


NrD
r
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In the second method [67], the calculations and 
measurements were done by adding the remaining 
value to the other parameters mentioned in the 
first method. In fact, the fractal dimension 

depends on the parameters	푁, 푟, and 푓; 푁 is the 
number of steps for any survey (Figure 4) and 푟 is 
the length of divider, which is constant for any 
step. The size of r increases by going to higher 
steps. 
푁푟 is a part of the desired profile with length of 
divider (푟). Considering 푓 as the remaining length 
of profile (Figure 5), the length of profile is 
equivalent to	푁푟 + 푓. Knowing these parameters, 
the fractal dimension of rough profile is as 
follows [67]: 
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Figure 2. Flowchart of study. 

 

  
Figure 3. Schematic representation of survey by applying method 1 (푵 = ퟒ). 

 

  
Figure 4. Surveying JRC1 exemplar profile by applying method 2 (퐍 = ퟒ). 
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Figure 5. Calculation of fractal dimension using method 2. 

 
In the third method, the fractal dimension is 
obtained by calculating the gradient of graph of 푁 
(step number) versus 푟 (length of divider) [56]: 

log
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2.3. Wavelet-based roughness calculation 
In this method (Figure 6), continuous wavelet 
transform (CWT) was applied for analyzing the 
roughness of profiles (Equation 4). It was 
supposed that similarity occurred between the 
rough profile and signal	x(0). Fourier transform 
(Ψ(f)) of the wavelet function (Ψ(f)) could be 
calculated using Equations 5 and 6 [20]. Semi-
roughness could be calculated using Equation 7. 
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where 휆 is the scale parameter (positive), 푡 is the 
transmission in a limited range, 푓 is the frequency 
parameter, and 푢 is the time. 

 

 
Figure 6. Schematic representation of accommodation between roughness profile (signal) and local wavelet in the 

wavelet-based process. 
 
2.4. Condorcet data fusion 
The Condorcet data fusion method is a decision-
making method, where only one winner will be 
introduced. The winner is an option in which the 
Condorcet criterion is observed [69, 70]. In this 
method, the results obtained might be compared 
together. For this purpose, a pairwise matrix 

should be created. Afterwards, the winner, loser, 
and equal results should be counted; this is the 
criterion for decision-making [71, 72]. For 
example, consider 푷푾푴 as a pairwise matrix 
between three features using five methods (푀  
to	푀 ): 

log (N + f / r) = - a log(r) + b

0
0.5

1
1.5

2
2.5

3

0 0.5 1 1.5 2
Δ 

lo
g 

(N
 +

 f 
/ r

)

Δ log r

Number of Steps
Remaining Length of Profile

Length of Devider

Accommodation of Roughness Profile (Signal) and Local Wavelet 

Roughness Profile (Signal) 

훹(푡) 

푡 



Lotfi & Tokhmechi/ Journal of Mining & Environment, Published online 

 

푓  

   
   
   
   
   

1 1 2 3 1 2 3

2 1 3 2 1 3 2

3 1 2 3 1 2 3

4 2 1 2 1

5 3 1 3 1

, ,

, ,

,

,

,

   

   

   

  

  

M F F F F F F

M F F F F F F

M F F andF F F F

M F F F F

M F F F F

 (8) 

1 2 3 1 2 3

1 112 13

2 221 23

3 331 32

4,1,0 4,1,0
1,4,0 2,2,1
1,4,0 2,2,1

    
        

      

F F F F F F
F Ff f

PWM
F Ff f
F Ff f

 (9) 

Based on the example, 푓  is equal to “4,1,0” in a 
double confrontation between feature i and feature 
j (here, feature 1 vs. feature 2). In the stated 
amount, “4”, “1”, and “0” are the numbers of 
wining, losing, and equality of F1 (feature 1) 
compared with F2 (feature 2), respectively. 
Therefore, all numbers for wining, losing, and 
equality might be counted. 

2.5. Borda count data fusion 
In this method, the data must be rated based on 
the position in the first step. Thus the first feature 
takes the highest score. The scores of the next 
features are reduced by one unit, respectively [72, 
73]. For example, the scores of features in 
푀 = {퐹 , 퐹 , 퐹 } are 3, 2, and 1, respectively. 
Thus it can be written as “퐹 ”, “퐹 ”, and “퐹 ” 
(퐹 ). This scoring should be done for all 
methods. To calculate each score, the score points 
are counted in each position cumulatively. Since 
the Borda scoring method can cover the problem 

of equilibrium of Condorcet, this method can be 
used for ambiguity and uncertainty. 

3. Results 
In this part, fractal analysis of JRC, wavelet 
analysis of JRC, and decision-making based on 
data fusion including Condorcet method and 
Borda Count are explained. 

3.1. Fractal analysis of JRC 
Regardless of the method for calculation and 
measurement of rough profiles (JRC exemplar 
profiles), it is expected that with increase in the 
number of profiles, the corresponding dimension 
for any profile increases. This is shown in Figure 
7 for each method. 
The results obtained for all methods (Figure 7) 
show that there is no straightforward relation 
between the JRC ranking and the calculated 
roughness. To overcome this problem, the results 
obtained might be fused. Table 1 shows the fractal 
dimension before and after ranking of JRC and re-
ranking of the profiles. 

 
Figure 7. Results Obtained from calculation and measurement based on fractal geometry for each method. 

 

1 2 3 4 5 6 7 8 9 10
Method 1 1.0876 1.0838 1.084 1.0862 1.085 1.0856 1.0918 1.0871 1.0872 1.0968
Method 2 1.0001 1.0008 1.0014 1.0045 1.0029 1.0043 1.005 1.008 1.0071 1.0116
Method 3 1.0876 1.0838 1.084 1.0862 1.085 1.0856 1.0918 1.0871 1.0872 1.0968
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Table 1. Rankings obtained using fractal-based methods. 

Profile No. after 
ranking 

Fractal 
dimension 

after ranking 

Fractal 
dimension 

before ranking 

Profile No. before 
ranking 

Method 
number 

2 1.0838 1.0876 1 

1 

3 1.0840 1.0838 2 
5 1.0850 1.0840 3 
6 1.0856 1.0862 4 
4 1.0862 1.0850 5 
8 1.0871 1.0856 6 
9 1.0872 1.0918 7 
1 1.0876 1.0871 8 
7 1.0918 1.0872 9 

10 1.0968 1.0968 10 
1 1.0001 1.0001 1 

2 

2 1.0008 1.0008 2 
3 1.0014 1.0014 3 
6 1.0029 1.0045 4 
4 1.0043 1.0029 5 
5 1.0045 1.0043 6 
7 1.0050 1.0050 7 
9 1.0071 1.0080 8 
8 1.0080 1.0071 9 

10 1.0116 1.0116 10 
2 1.0838 1.0876 1 

3 

3 1.0840 1.0838 2 
5 1.0850 1.0840 3 
6 1.0856 1.0862 4 
4 1.0862 1.0850 5 
8 1.0871 1.0856 6 
9 1.0872 1.0918 7 
1 1.0876 1.0871 8 
7 1.0918 1.0872 9 

10 1.0968 1.0968 10 
 
3.2. Wavelet analysis of JRC 
Re-ranking of JRC profiles based on Effective 
Signal Energy of Frequency Band (ESEFB) of 

wavelet and Optimum Mother Wavelet (OMW) is 
presented in Tables 2 and 3.  

 
Table 2. Re-ranking of JRC obtained using wavelet-based method (Effective Signal Energy of Frequency Band 

(ESEFB) approach). 
Profile No. after 

ranking 
Obtained ranking 

dimension from ESEFB 

Obtained 
dimension from 

ESEFB 

Effective signal 
energy of frequency 
band (ESEFB) (%) 

Profile No. 
before ranking 

1 1.0900 1.0900 99.84 1 
2 1.0897 1.0897 99.52 2 
7 1.0896 1.0870 96.59 3 

(9 or 10) 1.0880 1.0879 97.58 4 
(10 or 9) 1.0880 1.0810 90.16 5 

4 1.0879 1.0800 89.12 6 
3 1.0870 1.0896 99.46 7 
8 1.0862 1.0862 95.79 8 
5 1.0810 1.0880 97.71 9 
6 1.0800 1.0880 97.71 10 
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Table 3. Re-ranking of JRC obtained using the wavelet-based method. Optimum Mother Wavelet (OMW) 
approach. 

Profile No. 
after ranking 

Obtained 
ranking 

dimension 

Obtained 
dimension from 

OMWE 

Optimum mother 
wavelet energy 
(OMWE) (%) 

Optimum 
mother 
wavelet 

Profile No. 
before 

ranking 
1 1.0900 1.0900 99.84 rbio 3.3 1 
7 1.0899 1.0898 99.78 rbio 3.3 2 
2 1.0898 1.0807 96.60 rbio 3.1 3 
6 1.0875 1.0841 97.78 rbio 3.3 4 
8 1.0874 1.0834 97.56 rbio 3.3 5 
9 1.0853 1.0875 98.96 rbio 3.7 6 
4 1.0841 1.0899 99.83 rbio 3.1 7 
5 1.0834 1.0874 98.94 rbio 3.3 8 
3 1.0807 1.0853 98.22 rbio 3.3 9 
10 1.0800 1.0800 96.37 rbio 3.1 10 

 
4. Discussion 
Different re-rankings of JRC obtained from the 
utilized methods are subjected to ambiguity and 
uncertainty. The Condorcet criterion means that 
when there are more than two options, the winner 
should overcome all of them [74]. Therefore, the 
number of winners, losers, and equals might be 
considered. To do this, the results obtained were 
fused with Condorcet (Figure 8), making a 
decision matrix (Figure 9) [20]. The decision 
matrix can be simplified. According to the 

decision matrix obtained from the Condorcet data 
fusion method, the profile numbers 4, 5, and 6 
gained equal score (Figure 9). 
For decision-making, Borda count was used [73], 
and the final score was gained. 
Naturally, the positions of the equal options are 
the same. Thus scores of profiles 4, 5, and 6 are 
27, 26, and 29, respectively. The results of this 
method were fused with the results obtained from 
Condorcet, and the final ranking was achieved 
(Figure 10). 
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DESEFB

DOMWE

JRC

Method JRC JRC JRC JRC JRC JRC JRC JRC JRC JRC

Method JRC JRC JRC JRC JRC JRC JRC JRC JRC JRC





 

 
 JRC10 JRC9 JRC8 JRC7 JRC6 JRC5 JRC4 JRC3 JRC2 JRC1   
             

 

5,0,0 3,2,0 3,2,0 5,0,0 3,2,0 3,2,0 3,2,0 3,2,0 3,2,0 - 

 

JRC1 
           

5,0,0 5,0,0 5,0,0 4,1,0 5,0,0 5,0,0 5,0,0 5,0,0 - 2,3,0 JRC2 
           

4,1,0 3,2,0 4,1,0 3,2,0 4,1,0 4,1,0 3,2,0 - 0,5,0 2,3,0 JRC3 
           

4,1,0 3,2,0 4,1,0 3,2,0 1,4,0 3,2,0 - 2,3,0 0,5,0 2,3,0 JRC4 
           

4,1,0 3,2,0 3,2,0 3,2,0 3,2,0 - 2,3,0 1,4,0 0,5,0 2,3,0 JRC5 
           

4,1,0 4,1,0 4,1,0 3,2,0 - 2,3,0 4,1,0 1,4,0 0,5,0 2,3,0 JRC6 
           

5,0,0 3,2,0 3,2,0 - 2,3,0 2,3,0 2,3,0 2,3,0 1,4,0 0,5,0 JRC7 
           

4,1,0 3,2,0 - 2,3,0 1,4,0 2,3,0 1,4,0 1,4,0 0,5,0 2,3,0 JRC8 
           

4,0,1 - 2,3,0 2,3,0 1,4,0 2,3,0 2,3,0 2,3,0 0,5,0 2,3,0 JRC9 
           
- 0,4,1 1,4,0 0,5,0 1,4,0 1,4,0 1,4,0 1,4,0 0,5,0 0,5,0 JRC10 

             
Figure 8. Pairwise matrix using Condorcet data fusion method for the results obtained for all methods. 
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0 0 9 
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 0 1 8 JRC2 
     
 0 2 7 JRC3 
     
 0 4 5 JRC4 
     
 0 4 5 JRC5 
     
 0 4 5 JRC6 
     
 0 6 3 JRC7 
     
 0 7 2 JRC8 
     
 1 7 1 JRC9 
     
 1 8 0 JRC10 
       

Figure 9. Decision matrix, applying the Condorcet method on pairwise matrix. 
 

 
Figure 10. Ranking JRC exemplar profiles after data fusion and turning it into the New JRC (JRCN). 

 
The statuses of the three profiles were compared 
with the original trend line (Figure 11) by 
calculating the error value in accordance with the 
Manhattan norm (Equation 10) [75]. 

1
1

  
n

i i
i

p q p q  (10) 

The results that represent the final rankings are 
shown in Figure 12. The newly ranked profiles 
(JRCN) can provide improved results compared to 

the original ranking (JRC). The results of 
Condorcet confirmed the original ranking despite 
an ambiguity in the profiles 4, 5, and 6. Borda 
Count was used to achieve a robust ranking. It 
should be mentioned that the sum of squared error 
(SSE) of the original JRC is equal to 0.00410 
based on the Manhattan norm; while it is 0.00390 
for the newly ranked. This shows a better trend for 
JRCN. The suggested ranking is presented in 
Figure 12. In other words, if we want to judge 
about the roughness of custom profile by referring 

1 2 3 4 5 6 7 8 9 10
JRCN (Method 2) 1.00011.00081.00141.00431.00451.00291.00501.00801.00711.0116
JRCN (Method 1) 1.08761.0838 1.084 1.08561.0862 1.085 1.09181.08711.08721.0968
JRCN (Method 3) 1.08761.0838 1.084 1.08561.0862 1.085 1.09181.08711.08721.0968
JRCN (DEFBSE) 1.09001.08971.08701.08001.08791.08101.08961.08621.08801.0880
JRCN (DOMWE) 1.09001.08981.08071.08751.08411.08341.08991.08741.08531.0800
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to JRC or decide on any other issue based on 
Barton’s JRC [76], this judgment will be 
controversial; while it can be claimed that 
decision considering powerful methods based on 
proven theories (JRCN) is defensible and reliable. 

Another important point is to move away from 
differences in decision-making and convergence 
of expert opinions to each other. This is possible 
with the basis of SSE. 

 
JRC JRCN 

  
Method 푒푟푟표푟 Method 푒푟푟표푟 

푀푎푛ℎ푎푡푡푎푛	푛표푟푚 0.00410 푀푎푛ℎ푎푡푡푎푛	푛표푟푚 0.00390 
Figure 11. Calculation of error (SSE) using the Manhattan norm. 

 

 
Figure 12. Roughness of exemplar profiles before (JRC in left) and after (JRCN in right) re-ranking using the 

data fusion-fractal-wavelet-based approach. 
 
5. Conclusions 
The JRC profiles are widely utilized to rank the 
roughness of the fractures. Digitizing and 
analyzing of JRC profiles have confirmed that 

ranking of these profiles is challenging. In this 
work, a data fusion-based approach was utilized to 
achieve a robust ranking for the JRC profiles. In 
fact, calculation methods based on the definitive 
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approach in assigning quantity dimension to 
roughness values can be a reliable indicator in 
validating JRC. 
Different fractal/wavelet-based methods were 
used, and resulted in distinct semi-generalized 
ranking of JRC, showing the necessity of re-
ranking of JRC profiles because each method 
provided a different response from the other 
methods about decision based on the Barton’s 
JRC index. To achieve a more reliable ranking, 
the rankings obtained as the outcomes from each 
method were fused and integrated using the 
Condorcet and Borda Count methods. Condorcet 
showed ambiguity about ranking of the JRC4, 
JRC5, and JRC6 profiles. This ambiguity is the 
equality of the number of wins, losses, and draws 
in pairwise matrix for these example profiles. 
Thus the Borda Count position-based method was 
applied to assign proportional score to the 
achieved rankings. Based on the results obtained, 
addressed JRCN, profile 6 was moved to the 
fourth place, while the sequence of others 
remained stable. Consequently, the Manhattan-
based SSE decreased from 0.00410 (original JRC) 
to 0.00390 (JRCN). Obviously, this result, after 
accurate measurements, suggests that the trend 
based on JRCN will be more rational. Also it can 
be concluded that the achieved ranking is, in fact, 
an extension of the Barton’s pattern, which can be 
accepted as a new and more accurate and reliable 
applicable pattern. 
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  چکیده:

گیرد. در این میان، ضـرایب زبـري درزه   و مهمی است که در انواع مطالعات و با رویکردهاي گوناگون مورد بررسی قرار می زیبرانگ چالشها پارامتر زبري شکستگی
هـاي  ، بـا اسـتفاده از روش  پژوهشرود. در این کار میه صورت گسترده در این مطالعات به عنوان مبنا ب  اي است که به)، شاخص کاملاً شناخته شدهJRCبارتون (

ها محاسبه شد. برخلاف انتظار منطقی در خصوص لزوم وجـود   گیري و بعد آناندازه JRCهاي ی بر هندسه فرکتال و تبدیل موجک، زبري هر یک از پروفیلمبتن
گیري با استفاده ده و تصمیمچنین رخدادي، فارغ از مقادیر زبري بو که ی حال درشود. ها دیده نمیروند افزایشی در نتایج به دست آمده، این روند در خروجی روش

هاي متقنی هستند ها که هرکدام برآمده از تئوريهاي متفاوتی از هر یک روشبنديکند. در واقع براي شاخص مبنا، رتبهاز این شاخص را با ابهام جدي همراه می
یدار، دو روش ترکیب اطلاعاتی کندورسه و شمارش بوردا مـورد  شود و این موضوع محل مناقشه خواهد بود. براي حل این مسئله و دریافت پاسخی پامشاهده می

شـود. ایـن ابهـام    مشـاهده مـی   6و  5، 4بندي جدید با استفاده از روش کندورسه، شرایط مبهمی در مورد سه پروفیل استفاده قرار گرفت. در ترکیب نتایج و رتبه
قطعیت، روش شمارش بوردا مورد اسـتفاده قـرار   اي است. براي حل این عدمدر ماتریس جفتی مقایسه داده  رخهاي ها و برابريها، بازندهشامل برابري تعداد برنده

ارائـه شـده اسـت.     JRCNبندي مجدد ضمن ارائه یک رویکرد جدید، شاخص جدیدي تحت عنوان ها از طریق رتبهگرفت. با رفع مشکل رخ داده و اصلاح پروفیل
)، کاهش و بهبود یافته اسـت.  JRCNدهد که مقدار خطا در شاخص جدید ارائه شده (نشان می JRCNو  JRCهاي محاسبه مجموع مربعات خطا براي منحنی

تـوان بـراي بررسـی زبـري از     بنابراین می ؛هایی با منطق پذیرفته شده استفاده شده استهاي مبتنی بر تئوريعلاوه بر این در شاخص جدید از نتایج تمامی روش
 ي از یک استاندارد واحد، به پاسخی پایدار دست یافت.ریکارگ بهاستفاده نمود تا ضمن  JRCجایگزین  به عنوان JRCNشاخص 
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