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Abstract 
Rock burst is the most attractive and hot research area in geomechanics, mining, and civil 
engineering due to the increasing depth of mines and construction of deep underground 
structures. It has also been a severe problem in ground control measures in the last few 
decades. Many studies have been done by different researchers in order to minimize the 
hazards of rock burst and to provide a safe mining/working environment. It is important 
to review the current advancement of rock burst prediction and its preventive measures. 
This paper reviews the experimental progress of rock burst warning, prediction, control 
measures, and potential damage measures. Different effective methods of rock burst 
prediction and control are also described. 

1. Introduction  
The rock burst occurrence has been reported in 
China, South Africa, Canada, Australia, Chile, 
Sweden, India, Poland, France, America, Britain, 
Germany, Russia, Ukraine, Japan, South Korea, 
Pakistan, and twenty other regions/countries [1]; 
the history of rock burst in China and other 
countries dates back to 280 years ago. It has 
become a transient and complex static-dynamic 
process, and has attracted attention in rock science, 
underground excavations, supports design in hard 
rock-mines, geomechanics, and mostly in coal 
mines at deep levels. 
In order to understand the rock burst mechanism, 
its prediction, assessment, and prevention, and its 
intensity, damage potential, and impacts, a lot of 
research works have been carried out in the form of 
laboratory tests, field experiments, and computer-
based technologies. With the passage of time, the 
mitigation techniques have been improved and the 
theories have been modified to find solutions for 
this world-wide rock burst problem. Rock burst is 
a severe and complex problem in every country 

where the mines are very deep. It has also attracted 
attention in geotechnical engineering [2-4]. Sound 
research works in rock mechanics are revolving 
around rock burst, and the researchers are doing 
their best to predict it and to control this problem. 
This section of the paper will show the research 
progress made by several experts and researchers 
from all over the world. In the recent decades, the 
rock burst phenomenon has been investigated 
through experiments on the basis of different 
proposed theories. 

2. Experimental progress 
Experimental studies have been conducted by 
some experts on rock burst using the uniaxial 
compression tests, multi-mode tests (combined 
uniaxial and biaxial static-dynamic tests), true tri-
axial loading and unloading tests, and conventional 
tri-axial unloading tests. The acoustic emission 
(AE) technology has been introduced and used in 
rock mechanics to investigate the rock failure and 
rock burst phenomenon [5-7]. True tri-axial 
equipment has been modified and re-introduced 
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with a unique characteristic of unloading the 
samples during a test on one surface; it was used to 
understand the strain burst process and simulate the 
results obtained [8]. Bolts and anchors have been 
designed and considered as an efficient measure for 
rock burst control due to their performance in the 
reinforcement of rock-coal and to hold retained 
reinforced rock-coal mass. Supports have also been 
monitored and investigated by different experts 
such as “Cone bolt” and “Roofex” [7, 9]. 

Laboratory experiments have been conducted to 
investigate the rock burst mechanism. The in-situ 
stress state has been investigated, and also 
generation of the 3D stress state has been analysed 
and discussed [10]. An experimental scenario is 
mentioned in Figure 1. The plate structure 
evolution is correlated with the structural response 
of the rock, and is divided into three types [Figure 
2]. 

 
Figure 1. Stress excavation-induced rock burst [10]. 

 
Figure 2. Structural changes after rock burst [10]. 

Laboratory modelling of the rock burst 
phenomenon under a severe deep ground condition 
was the major achievement of the State Key 
Laboratory for Geomechanics and Deep 
Underground Engineering (SKLGDUE) at the 

China University of Mining and Technology, 
Beijing. A “Deep Underground Rock Burst 
Analogue Test Machine (DURATM) was designed 
in 2006 (Figure 3). 
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Figure 3. DURATM simulation of rock burst process at deep levels (CUMT-BEIJING) [10]. 

DURATM is a unique system with specific 
characteristics. In these experiments, it was 
important that one surface of the sample should be 
unloaded immediately and the other surface should 
be free, which was crucial for the simulation of the 

in situ rockburst condition, and the design of a 
single face unloading device was a great 
achievement of SKLGDUE at CUMT, Beijing 
[Figure 4]. 

 
Figure 4. The single face unloading device [10]. 

In 2006, 200 tests were conducted using DURATM 
at SKLDGUE; the samples were brought from 
different countries, and different types of tests were 
conducted; the rock burst tests were most important 
among them. In 2011-12, a new apparatus for rock 
burst experiments in laboratory was introduced and 
designed. It was developed to simulate the impact-

induced rock burst. Instantaneous burst, delayed 
burst, and pillar burst were simulated by this 
system. A representation of the system is given in 
Figure 5. For the static and dynamic tests, CRLD 
(constant resistance large deformation bolts) were 
developed. CRLD, with its working principles, is 
given in Figures 6 and 7 [10]. Apart from this, the 
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testing systems for the static and dynamic stress-
state tests were developed and used [11]. On the 
basis of the types and classification of rock burst, 
an experimental study was conducted, and a variety 
of laboratory tests were performed to understand 
the rock burst mechanism. In 2015, Zhou carried 
out the buckling rock burst test on a granite 
specimen to analyze the failure characteristics [12]. 
In 2018, Li conducted a spallation failure test on a 
granite sample through a modified Hopkinson 
pressure bar, and a crack propagation in the form 
of semi-sinusoidal waves was observed by a high-
speed camera [13]. Dyskin and Germanovich 
conducted an experiment to evaluate the causes of 
slab-type rock burst, and their results proposed that 
excavation promoted the primary fractures, and 
free surface was responsible for crack propagation 
in the parallel direction of rock-wall, and rock burst 
occurred [14]. Li also carried out a test on the same 
material to find out the causes of rock burst by 
tunnel excavation, and from the results obtained, he 
proposed that the tunnels in the fields were under 
the spalling and drum-type tensile failure [15]. 
Gong reproduced the buckling rock burst process 
through an experiment (a 3D loading test by a true 
tri-axial test system) [16].  
Laws of failure of rock burst were analyzed 
through an experiment using the true tri-axial test 
system [17].  

 
Figure 5.  New deep rock non-linear mechanical 

system [10]. 

 
Figure 6. Constant resistance large deformation 

bolt [10]. 

 
Figure 7.  Supporting principle for a constant 
resistance, large deformation bolt. (A). Elastic 

deformation stage (B). Structural deformation stage 
(C). Ultimate deformation stage. [10]. 

Zuo conducted various experiments on a 
combination of different rocks and analyzed the 
dynamic effect of stress [18]. The evolution laws 
of temperature field and displacement field were 
verified by conducting an experiment on an 
instable model to analyze the failure process (by 
the non-contact monitoring method) [19]. An 
indoor physical test was conducted in 2018, and the 
model of inclusion rock burst was proposed; the 
whole process of rock burst was reproduced in 
laboratory to study the rock burst mechanism. This 
study was very fruitful for the prevention and 
control of rock burst [20]. 

3. Warning, prediction, and control measures 
As rock burst is accompanied by a sudden and 
violent ejection of rock or coal, and so it is almost 
difficult to minimize deformation and failure 
initiation in a highly stressed rock or coal [21]. 
“Warning” means the indication of rock burst risk 
in high stressed zones, and it is the first step 
towards rock burst prediction. Several researchers 
have adopted different warning methods about 
rock burst. “Rock burst warning” is an indication 
towards the location, intensity, and probability of a 
rock burst. It does not indicate the time of rock 
burst occurrence. In 2017, the Chinese researchers 
proposed the warning measures for rock burst in 
deep metal mines, and the results obtained were 
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used for further investigations [22]. Rock burst 
creates a spatial fractal behavior during the 
distribution process [23]. According to the Chinese 
researchers, monitoring the micro-seismic events 
and energy distribution during these events is a 
fundamental step towards warning. They have 
proposed a correlation between the rock burst 
intensity and micro-seismicity. The higher the 
energy, the larger are the event numbers and the 
higher is the rock burst tendency and the greater are 
the rock burst intensities [24]. 
Several measures have been used to prevent and 
restrict failure of rock or coal. The preventive 
measures can help to avoid or minimize the impact 
of rock burst. In Poland, the research on rock burst 
is more advanced. Poland has developed an 
efficient monitoring system, which has been 
installed in all rock burst prone mines. This 
monitoring system works on the method of micro-
seismic events, drilling chip, and efficient 
prediction. The ARAMIS M/E micro-seismic 
monitoring system and the ARES-5/E earth-sound 
monitoring systems have been developed in 
Poland, and these systems are used around the 
world. A passive seismic tomography has been 
effectively used for the prediction of the rock burst 
hazard [25]. In China, there are several monitoring 
systems that are helpful to predict rock burst as the 
more cases of rock burst occurred, so different 
monitoring methods such as micro-seismic 
monitoring events, electromagnetic radiation, 
drilling chips, and ground sounds are used [26-30]. 
Rock burst is accompanied by induced dynamic 
and static stress according to the principle of 
superposition. In 2014, Limning Dou and 
Zonglong Mu suggested that in order to predict 
rock burst occurrence, the static and dynamic stress 
states should be monitored. According to these 
researchers, the dynamic stress is monitored on the 
basis of the breaking laws of coal-rock. The micro-
seismic method, CT/EMR, and the earth sound 
technology were used to monitor the whole 
process. The static stress was monitored through 
drilling cutting monitoring and the elastic wave CT 
test. The static1dynamic stress method was used 
for the prediction of rock burst [31]. The zoning 
and leveling forecasting method [32] has been 
proposed by Dou and He in order to predict the 
rock burst danger. According to them, the 
prediction method includes an early prediction and 
a real time prediction. They used a comprehensive 
index to predict danger. They also proposed 
different forecasting methods, and rockbursts were 
predicted on four scales in dangerous areas. The 
prediction scale is given in Figure 8 [33]. The CT 

technology was used in China to predict the rock 
burst danger; Wang have studied and used the CT 
and EMR technologies in Chinese coal mines [34-
36]. 

A “novel technology” has been used for controlling 
the hard and thick roofs. This technology was 
effective with broad applications such as time-
saving, labor-saving and safety. Researchers have 
conducted sound analyses on burst intensities 
through the burst resisting mechanism by hard rock 
fracturing (roof fracture) [37, 38]. Many prediction 
methods such as the fuzzy-based evaluation 
method distance discriminant analysis, support 
vector machine (SVM) extension theory-based 
method, rough-set-based method, numerical 
simulation method, and unascertained method have 
been suggested by many researchers; every method 
has its own limitations. BP (back-propagation) and 
RBF (radial basis function) have also been used 
[39-47]. In the recent years, the ANN-based 
method has been used by various researchers to 
predict rock burst. This method has been 
considered as an efficient and intelligent method 
for rock burst prediction [48-49]. PNN 
(probabilistic neural network) has been introduced 
by Specht and Donald, and used by a number of 
researchers to predict the rock burst classification 
as well as fault diagnosis [50-55]. 

 
Figure 8. Prediction of rock burst danger [31]. 

Since rock burst is a complex phenomenon, 
therefore, a comprehensive analysis has been 
performed by different researchers; the individual 
indices were determined, and then a 
comprehensive index was presented. Figure 10 [56] 
illustrates the comprehensive analysis of different 
factors for rock burst prediction and pre-warning 
from a stress-strain curve. Based on the 
comprehensive index, the degree of rock burst is 
identified and the controlling measures are given in 
Table 1. 
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Figure 9. The design process of PNN modeling for prediction of rock burst [42]. 

 
Figure 10. Stress-strain and seismo-acoustic events for rock under different loading stages. [56]. 
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Table 1. Prediction of rock burst danger [56]. 
Danger 
degree 

Danger 
state 

Comprehensive 
index Controlling measures 

A No < 0.25 Managing the mining area normally and conducting the designing and 
mining the same as that without rock burst danger. 

B Weak 0.25-0.5 
Providing monitoring and pressure releasing equipment. 

Forming monitoring and controlling plans. 
Conducting monitoring and pressure measures and check validity. 

C Medium 0.5>0.75 
In addition to measures taken as weak danger, reasonably allocating 

roadways and chambers, reasonably selecting mining, and supporting 
parameters. 

D Strong >0.75 

In addition to the measures taken as a medium danger, pre-mining 
pressure releasing measures should be conducted comprehensively and 

check their validity. 
If rockburst danger cannot be eliminated, mining activities should 

terminate or be re-designed. 

 
Different researchers have selected different 
parameters to evaluate the rockbursts index criteria. 
The approaches were different on the basis of 
rockbursts intensities. Field stresses were used to 

define the rockbursts intensities. The criteria listed 
in Table 2 were proposed early and used for further 
research works. 

Table 2. Warning and prediction about rock burst occurrence [57-60]. 

 
In Table 2, σᶿ denotes the tangential stress of the 
surrounding rock, MPa, σc denotes the axial stress 
of the rock surrounding the excavation, MPa, σI 
represents the in-situ stress of the area, and MPa, 
σ1 is the uniaxial compressive strength (UCS) of the 
rock in MPa. 
Dong has proposed a set of equations for the 
prediction of rock burst on the basis of energy, and 

this set of equations have been used by various 
researchers to evaluate the comprehensive indices 
through different approaches [42, 61].  

Wqx ≥1.5 (1) 

σ1≥бc/ αWqx (2) 

α =1 + ξ2 - 2μξ (3) 
ξ = σ2/σ1 (4) 
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wqx is the rock burst occurrence tendency index; σ1 

and σ 2 are the principle stresses around the 
surrounding rock; μ is the possion ratio , and 
ξ is a ratio of the major stress. 
Kidybinski gave an idea of energy index Wet, and 
proposed a new criteria for warning and prediction 
of rock burst [62].  

Table 3. Conditions and warnings [62]. 
Condition Warninig/Prediction 
푊 < 2.0 No Rock burst 

2.0 ≤ 푊 ≤ 5.0 Moderate Rock burst 
푊 ≥ 5.0 Strong Rock burst 

The intensity weakening theory has been adopted 
and applied as a preventive measure for rock burst. 

     , / , / . /rs t r t f t f t cr t c t cofU jU E j jU E j jU E j UU           (5) 
where U is the accumulated elastic strain energy of 
the coal-rock mass at any time, Uf is the 
disturbance energy by mining-induced tremors, U0 
is the difference between the initial accumulated 
and dissipated elastic strain energy of the coal-rock 
mass, Uj is the limited elastic stored energy of the 
coal-rock mass, Ut is the increment of accumulated 
elastic strain energy at any time t of coal-rock mass, 
and Ue denotes the released elastic energy by the 
relieve shot [31]. This theory was applied to the 
long wall mining method [Figure 11]. 

 
Figure 11. Energy weakening theory [31]. 

According to the above theory, the burst tendency 
can be reduced by weakening the coal-rock. Stress 
concentration can be reduced by transferring the 
peak stress into a deep area of coal-rock. The 
pressure measures can be taken in case of rock 
burst occurrence to release pressure in order to 
minimize the damage risk. In 2008, Singh proposed 
some ideal steps to control the rock burst 
occurrence and concluded that “the number of 
steps can be taken to minimize the occurrence of 
rock bursts in the seismically hazardous mine 
workings [63]. The mining operations should be 
planned to minimize the mining induced energy 
changes by optimizing the mining sequence and by 
avoiding the formation of high-stress areas. Rock 
support should be designed adequately, and the 
volumetric convergence may be controlled by 
partial extraction, back-filling, and small stopping-
width” [64]. In 2015, A. Mazaira and P. Konicek 

published an article and proposed that lithology 
and stress concentration monitoring and 
investigations are the main steps to predict the risk 
zones. They proposed that it was necessary to 
predict the dangerous zones that had a tendency for 
rock bursts. Determination of the lithology and in-
situ stress state are the basic steps involved to 
indicate the areas where rock or rock mass achieves 
a level of critical stress because a huge amount of 
strain energy can be stored in a hard rock mass, and 
this is done by using a comprehensive geological 
model. A correct prediction can minimize the risk 
and costs, and provides a safe environment for the 
workers. According to the stress approach, several 
mathematical indices, e.g. failure approach index 
(FAI) and excess shear stress (ESS) were used to 
evaluate and forecast the rock burst risk. Under an 
energy-balance approach, the methods used to 
predict rock burst risk were based on energy 
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indices such as energy release rate (ERR), energy 
storage rate (ESR), strain energy storage index 
(WET), potential energy of elastic strain (PES) or 
strain energy density (SED) (i.e. the elastic strain 
energy in a unit volume of the rock mass, which is 
calculated by the uniaxial compressive strength of 
the rock and its unloading tangential modulus and 
burst potential index (BPI). Rock burst risk was 
also predicted using the rock brittleness index B 
(i.e. the ratio of uniaxial compressive strength to 
tensile strength of rock [65-73]. When the 
predictions were completed, then it was easy to 
take the control steps and preventive measures. 
According to the research studies, three different 
approaches or steps have been proposed for rock 
burst prevention: (I) optimization of the project 
layout scheme; (II) pre-conditioning of the rock 

mass; and (III) rock mass reinforcement and 
support [74, 75]. These approaches were felicitous 
for both the mining and civil works, even though 
there were important differences in their 
application to these fields, for instance, 
establishing the same prevention approaches but 
specifically focusing on mining excavations. 
Recently, numerical modelling has been used as a 
helping tool to evaluate the rock burst risk. Rock 
burst is a very complex phenomenon and cannot be 
predicted through a single parameter or factor. On 
the basis of the above-mentioned information, 
mining stresses and disturbances are responsible 
for rock burst occurrence; multi-factors were 
considered and studied for the prediction and 
control measures. 

 
Figure 12. Modified [76, 77]. 

4. Damage potential measures 
A sound research work related to the potential of 
rock burst has been conducted. In 1974, the 
Russnes’s method was proposed, which classified 
the rock burst severity into four groups (none, 
weak, moderate, and severe, according to different 
basis such as noise, shape, and features of failure 
after rockburst) [78]. Tan has proposed a method 
that classified rock burst into four classes on the 
basis of in-situ laboratory tests and investigations, 
and considered the mechanical characteristics, the 
type and the shape of the failure, the intensity of 
destruction, and the sound of the rock burst [79]. In 
1994, Brauner proposed a unique method (Brauner, 

1994), which classified rock burst into three levels 
based on the intensity of destruction to the 
surrounding rock mass [80]. The Canadian team of 
Rockburst Research Program (CRRP) has also 
proposed a method (Kaiser, 1996) that is based on 
geometry, depth of damage zone inside the rock 
mass, observations and empirical criteria, and 
classifying the damage severity of rock burst into 
minor, moderate, and major [81]. In China, a 
research group working on the Code for Geological 
Investigations of Hydropower Engineering 
(CGIHE) has proposed a method to investigate the 
rock burst severity, which is a typical qualitative 
rock burst classification method. A new rock burst 
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classification method has been suggested by Chen, 
which is based on the radiated energy from rock 
burst monitored with a micro-seismic method and 
the severity of surrounding rock damage for the 
quantitative prediction of rock burst severity [82, 
83]. Due to the simplicity and flexibility of this 
method, it is mostly used for the prevention and 
control of rock burst in mining and geotechnical 
engineering fields, and these methods help for 
further studies and new methods. Different 

approaches are shown in Table 6. The researchers 
are working on the rock burst phenomenon in every 
respect because it is a major problem of mining and 
geotechnical fields globally. The above table 
describes the different approaches, mathematical 
equations, and parameters to predict the rock burst 
potential. It also describes the complete the 
scenario of various approaches from 1972 to 2017 
[84-133]. 

Table 4. Damage potential approaches [84-133]. 

Authors (year) Index and/or equations 
No 

rock 
burst 

Light rock 
burst 

Medium 
rock burst 

Heavy 
rock 
burst 

Serious 
rock 
burst 

Turchaninov (1972) (σᶿ + σL)/σc ≤ 0.3 0.3–0.5 0.5–0.8 > 0.8  
Neyman (1972) Wet = Ee/Ep < 2.0 2.0–3.5 3.5–5.0 > 5.0  

Hucka and Das (1974) Brittleness of rocks 
B1 = (σc − σt)/(σc + σt); B2 = sin φ  10–5    

Barton (1974) σc/σ1 > 10 5–2.5 < 2.5   
Barton (1974) σt/σ1 > 0.66 0.66–0.33 0.33–0.16 < 0.16  

Russenes (1974) Stress coefficient σᶿ/σc ≤ 0.2 0.2–0.3 0.3–0.55 > 0.55  
Russenes (1974) Stress coefficient Is/σᶿ > 0.20 0.15–0.20 0.083–0.15 < 0.083  

Hoek and Brown (1980) σᶿ/σc 0.34 0.42 0.56 ≥ 0.7  
Ryder (1988) ESS=|τ|−σntan φd <5 5–15 >15   
Cook, (1966) ERR = Φk/Φ0 < 3.5% 3.5–4.2% 4.2–4.7% > 4.7%  
Tao (1988) AI = σc/σ1 > 14.5 5.5–14.5 2.5–5.5 ≤ 2.5  
Tao (1988) σ1/σc < 0.069 0.069–0.180 0.180–0.400 > 0.400  
Hou (1989) Hcr = 0.318σc (1 − μ)/(3 − 4μ)γ      

Hou (1992) Wqx 
σ1 (αWqx)0.5/σc 

< 1.5 
< 1 

1.5–2.5 
1–1.41 

2.5–3.5 
1.41–1.73 

> 3.5 
> 1.73  

Singh (1988) Decrease modulus index > 1 1–2 < 1   
Singh (1988) Burst proneness index < 10 10–15 > 15   

Li (1990) Kw = (σmax)2λ cos α/E < 0.1 0.1–0.3 0.3–0.6 > 0.6  
Tan (1991) Brittleness index Ku = U/U1 ≤ 3.5 3.5–5.0 5.0–7.0 > 7  
Xiao (1991) ω = (σ1/σ1cr)2 < 1 1–2 2–5 > 5  

GB50218-94 (IYRWR 
1995) Kv = (Vp/Vs)2 < 0.55 0.55–0.65 0.65–0.75 > 0.75  

Aubertin (1994) Brittleness Index Modified (BIM) = A2/A1 > 1.5 1.2–1.5 1.0–1.2   
Mitri (1996) Energy-band failure index PSF = e4/ec      

Palmström (1995) Competency factor Cg = fσσc/σθ = RMi/σᶿ > 2.5 1.0 –2.5 0.5–1.0 < 0.5 
Peng (1996) Hcr = σt/[γ((1 + λ) + 2(1 − λ)cos2θ)]      
Peng (1996) Rock brittleness coefficient B3 = σc/σt > 40 40–26.7 26.7–14.5 < 14.5  

Wu and Zhang (1997) DT > 500 50–500 ≤ 50   
Simon (1999) BPR = |Kp/Ke      
Simon (1999) OBI = Fob/Fres      
Wang (2009) EMTDM σᶿ/σc < 0.3 0.3–0.5 0.5–0.7 ≥ 0.7  
Mitri (1999) BPI = (ESR/E) 100% 100% < 25% 25–50% 50–75% 75%–1 > 1 

Yeryomenko (1999) Rockburst-hazard criterion K1 = Ese/JQ < 10-5  1.7 × 10-4 > 3.5 ×  
–3.5 × 10−4 10-4  

Yeryomenk (1999) K2 = ρ1/ρ2 ≥ 1 0.5–1 0.1–0.5 < 0.1  
Feng (2000) k = 0.1(σc × εf)/(σt × εb) < 3 3–5 ≥ 5   
Tang (2000) Hcr = σc(1 − μ)/[5(3 − 4μ) γ]      

Wang and Park (2001) PES = σc
2/2Eu ≤ 50 50–100 100–150 150–200 > 200 

Pan and Li (2002) Hcr = σc(1 − sinφ)λ1[(1 + E/λ1)1/(1 − sinφ) − E/λ1 

− 1]/2Eγsinφ      
Tang and Wang (2002) k = (σc × εf)/(σt × εb) < 20 20–75 75–130 > 130  
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Zhang (2003) Brittleness index Ku 

Ku = U/U1 ≤ 2 2–6 6–9 > 9  
Zhang (2003) B3 = σc/σt < 10 10–18 > 18   
Zhang ( 2003) α = σc/σ1 > 10 5–10 2.5–5 < 2.5  
Zhang (2003) β = σt/σ1      
Heal (2006) EVP = E1 E2/E2 E4 < 50 50–85 85–105 105–140 > 140 

Bukowska (2006) GEOn = Rn Wn < 60 60–71 72–112 > 112  
GB50487-2008 (National 

Standards Compilation 
Group of People’s 

Republic of China, 2008) 
σc/σmax > 7 4–7 2–4 < 2  

Mitri (2007) PSF =(σ1/UCSrm) 100%     
Li (2008) RQD index < 25 25–50 50–70 > 70  
Li (2008) Stress index <0.15 0.15-0.20 0.15–0.25 >0.25  
Li (2008) Grade of surrounding rock below II–III II–I I  

Chen U/U0  0.3 0.4 0.5 ≥0.7 
Lu, J.Y, (Zhou, 2010) σᶿ/σc≥Ks σt/σc 0.25 0.5 0.75 1.00  
Lu, J.Y (Zhou, 2010) Ks 0.30 0.40 0.45 0.60  

Hosseini, (2010) Normalized deviatoric stress 
NDS=(σ1−σ3)/σc ≤0.35 0.35–0.5 0.5–0.8 0.8–1.0 >1.0 

Shan Z G (Zhou, 2010) lithology criteria σᶿ/σc > Ks      
Qiu (2011) RVI = FsFrFm Fg      

Tarasov and Randolph 
( 2011) Brittleness index B4 = (Eu − M)/M      

Castro (2012) BSR = (σ1 − σ3)/σc .45–0.6 0.6–0.7 > 0.7   
Shang (2013) Prb = (Kᶹ σᶿ)/σt < 1.7 1.7–3.3 0.3.3–9.7 > 9.7  
Zhang (2013) S = tanh{[0.1648(σᶿ/σc)3.064 (B3)−0.4625 (Wet) 

2.672] (1/3.6)} < 0.25 0.25 –0.50 0.5–0.75 > 0.75 
He (2015) Rockburst risk index IRB = H/σRB < 0.6 0.6–1.2 1.2–2.0 > 2.0  
Yin (2014) DS = Wcf εsa//εfc < 10 10–20 > 20   

Mutke (2015) Weighted value of peak particle velocity 
(PPVW), m/s ≤ 0.05 05–0.2 . 0.2–0.4 > 0.4  

Mutke (2015) AG-R = [(bm − b)/bm]·100% < 0 0–25 25–50 > 50  
Zhang (2016) Potential rockburst index 

Ω = (3 − λ0 )Wet σ /θσc < 0.4 0.4–1.05 1.05–2.5 > 2.5  

Zhao (2017) 
σc/σ1 
σθ/σc 
σc/σv 

>5 
≤ 0.2 
> 10 

4–5 
0.2–0.5 
5–10 

2.5–4 
0.5–0.7 
3.3–5 

1.5–2.5 
0.7–0.9 
2.5–3.3 

≤ 1.5 
> 0.9 
≤ 2.5 

Zhou (2017) Wet = Ee/Ep < 2.0 2.0–5.0 5.0–10.0 >10.0 ≤ 2.5 

5. Conclusions 
The previous experiments and strategies of 
rockburst prevention, control, monitoring, and 
prediction are discussed and mentioned in this 
paper. From the very beginning to the current era, 
there were many flaws in the previous approaches 
and methods, which were modified with the 
passage of time and requirements. Experiments 
were performed carefully to investigate the 
rockbursts phenomenon and its prediction and 
damage potential. The uniaxial compressive test, 
multi-mode tests, and tri-axial texts were 
conducted at laboratory to investigate the rockburst 
mechanisms. The experimental procedures and 
equipment were modified. The AE technology was 
introduced to investigate the rock failure. 
Laboratory modelling of the rock burst 
phenomenon under severe deep underground 
condition was the major achievement of 

SKLGDUE at the China University of Mining and 
technology, Beijing. Laboratory modelling of rock 
burst phenomenon under severe deep underground 
condition was the major achievement of 
SKLGDUE at the China University of Mining and 
technology, Beijing. Invention of DURATM and 
simulation of rock burst process at deep levels 
(CUMT-BEIJING) were a major success. Many 
prediction methods such as the fuzzy-based 
evaluation method have been suggested by many 
researchers. The PNP modelling process was 
established to predict rockburst. Dou Liniming and 
Mu Zonglong invented a new procedure to evaluate 
the rockburst prediction, prevention, and damage 
potential through the energy theory. At the end, a 
table is drawn carefully to summarize the rockburst 
danger and potential measure. 
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  چکیده:

انفجار  نیاسـت. همچن ینیزم ریز يسـازه يریعمق معادن و عمق قرار گ شیافزا یدر پ کیو ژئومکان يدر معدنکار قابل تأملو  جیمه يمسـئله کیانفجار سـنگ 
س کیسنگ  سا ضل ا سائل مربوط به  یمع س ریدر چند دهه اخ نیزم کنترلاقدامات در م ست. مطالعات ب سط محق ياریا ش رامونیپ قیتو  از یکاهش خطرات نا

سنگ و فراهم آوردن  ست. بازب ینیرزمیامن در معادن ز یاتیعمل طیمح کیانفجار  سنگ و اقدامات پ ینیب شیپ یفعل يایمزا ینیصورت گرفته ا  رانهیشگیانفجار 
ست. در ا يضرور يامر ،آن يلازم برا شدار برا یتجرب شرفتیمطالعه پ نیا  بیتخر لیو پتانس یانفجار سنگ، اقدامات کنترل ینیشبیانفجار سنگ، پ يدر مورد ه

  ر سنگ و کنترل آن شرح داده شده است.اانفج ینیب شیمختلف پ يهاروش نیشده است. همچن ینیتوسط انفجار سنگ بازب
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