Rock Mechanics
H. Fattahi; N. Babanouri; Z. Varmaziyari
Abstract
The dynamic response of slopes against earthquake is commonly characterized by the earthquake-induced displacement of slope (EIDS). The EIDS value is a function of several variables such as the material properties, slope geometry, and earthquake acceleration. This work is aimed at the prediction of EIDS ...
Read More
The dynamic response of slopes against earthquake is commonly characterized by the earthquake-induced displacement of slope (EIDS). The EIDS value is a function of several variables such as the material properties, slope geometry, and earthquake acceleration. This work is aimed at the prediction of EIDS using the Monte Carlo simulation method (MCSM). Hence, the parameters height, unit specific weight, cohesion, friction angle, vibration duration, and maximum horizontal acceleration are used to predict the EIDS values. To do this, a multiple non-linear regression relationship is first derived between EIDS and the independent variables. Then MCSM is performed based on the developed regression equation. The results obtained demonstrate that the stochastic approach used is able to successfully reproduce the EIDS values and calculate the confidence intervals. The average of the measured and simulated values for EIDS was 4.34 cm and 4.48 cm, respectively. Eventually, the results of a performed correlation sensitivity analysis revealed that the maximum horizontal acceleration had the greatest impact on EIDS.
H. Fattahi; N. Babanouri
Abstract
The tensile strength (TS) of rocks is an important parameter in the design of a variety of engineering structures such as the surface and underground mines, dam foundations, types of tunnels and excavations, and oil wells. In addition, the physical properties of a rock are intrinsic characteristics, ...
Read More
The tensile strength (TS) of rocks is an important parameter in the design of a variety of engineering structures such as the surface and underground mines, dam foundations, types of tunnels and excavations, and oil wells. In addition, the physical properties of a rock are intrinsic characteristics, which influence its mechanical behavior at a fundamental level. In this paper, a new approach combining the support vector regression (SVR) with a cultural algorithm (CA) is presented in order to predict TS of rocks from their physical properties. CA is used to determine the optimal value of the SVR controlling the parameters. A dataset including 29 data points was used in this study, in which 20 data points (70%) were considered for constructing the model and the remaining ones (9 data points) were used to evaluate the degree of accuracy and robustness. The results obtained show that the SVR optimized by the CA model can be successfully used to predict TS.