K.M. Tanguturi; R.S. Balusu
Abstract
It is necessary to obtain a fundamental understanding of the goaf gas flow patterns in longwall mine in order to develop optimum goaf gas drainage and spontaneous combustion (sponcom) management strategies. The best ventilation layout for a longwall underground mine should assist in goaf gas drainage ...
Read More
It is necessary to obtain a fundamental understanding of the goaf gas flow patterns in longwall mine in order to develop optimum goaf gas drainage and spontaneous combustion (sponcom) management strategies. The best ventilation layout for a longwall underground mine should assist in goaf gas drainage and further reduce the risk of sponcom in the goaf. Further, in the longwall panel, regulators are installed in the maingate (MG) seals to control the gas migration on the MG side and the mine operators frequently encountered with seals leakage problems leading to abnormal gas contents in the tube bundles. Extensive parametric studies were carried out to investigate the effects of ventilation layouts, regulators, and seals leakages on the goaf gas distribution using the Computational Fluid Dynamics (CFD) techniques. The results of various CFD simulations are presented and discussed in detail in this paper.
K. Tanguturi; R. Balusu
Abstract
Fundamental understanding of the goaf gas distribution in a gassy coal mine is necessary for developing effective goaf gas drainage strategies in the longwall coal mine. The goaf gas was subjected to the surface and body forces that were classified depending upon whether they acted on the surface area ...
Read More
Fundamental understanding of the goaf gas distribution in a gassy coal mine is necessary for developing effective goaf gas drainage strategies in the longwall coal mine. The goaf gas was subjected to the surface and body forces that were classified depending upon whether they acted on the surface area or the volume of the gas element. Of these forces, the body forces were more predominant in displacing the goaf gas present in the underground mine. The buoyancy forces were classified as the body forces; they are the predominant forces acting on the goaf gas. The buoyancy forces depend mainly upon the density variation in the gas species and the panel orientation or panel geometry. If the temperature variations are neglected, the buoyancy forces that cause the displacement of the goaf gas depend mainly upon the panel orientation. In this work, numerical investigations were carried out using the computational fluid dynamics (CFD) techniques for the fundamental understanding of the goaf gas displacement for various panel orientations. The numerical results obtained for various panel orientations indicated that the goaf gas is displaced towards the tailgate (TG) side when the maingate (MG) was downdip, towards the MG side when MG was updip, towards the start-up of the panel when the face was downdip, and towards the face when the face was updip.