Exploitation
Abbas Khajouei Sirjani; Ruqyah Heydari; Ramin Rafiee; Mohammad Amiri Hosseini
Abstract
In open-pit mining blasting operations, one of the most critical parameters that must be continuously and precisely monitored and evaluated is the extent of back-break caused by the blasts. This phenomenon can lead to mine wall instability, collapse of mining equipment, increased dilution rates, and ...
Read More
In open-pit mining blasting operations, one of the most critical parameters that must be continuously and precisely monitored and evaluated is the extent of back-break caused by the blasts. This phenomenon can lead to mine wall instability, collapse of mining equipment, increased dilution rates, and disruption in drilling and charging operations in subsequent stages. The objective of this research is to predict and optimize back-break by combining statistical models with the Firefly Algorithm (FA). For this purpose, a database comprising data from 28 blasts in the waste rock section of Gol-e-Gohar Iron Ore Mine No. 1 was compiled. After data collection, the input parameters, including blast hole length, burden, spacing, Stemming, charge per delay, and Number of holes in the last row, were identified and utilized in the modeling process. To predict back-break, modeling was performed using multiple regression analysis. Among the developed models, the Polynomial statistical model with non-integer coefficients model with an adjusted coefficient of determination 0.885 was identified as the best-performing model and was subsequently used as the objective function in the Firefly Algorithm. The optimization process was then carried out using this algorithm. According to the findings of this research, the implementation of the current operational patterns in the mine along with the optimized proposed patterns resulted in a reduction of 4 meters in the average back-break, decreasing it from 7.5 meters in the waste rock section. The results demonstrate that the Firefly Algorithm is a highly effective and reliable tool for model optimization and a more accurate reduction of back-breaks. This approach has the potential to significantly enhance the efficiency of mining operations and reduce operational costs.
Rock Mechanics
Sajjad Rezaei; Ramin Rafiee; Mohammad Ataei; Morteza Javadi
Abstract
The stability of waste dumps is a significant and at times critical issue in the development of surface mines. Due to insufficient space for waste disposal, environmental concerns, and various other factors, Mine No. 4 at Golgohar Sirjan is not capable of establishing a new waste dump. Given the existing ...
Read More
The stability of waste dumps is a significant and at times critical issue in the development of surface mines. Due to insufficient space for waste disposal, environmental concerns, and various other factors, Mine No. 4 at Golgohar Sirjan is not capable of establishing a new waste dump. Given the existing limitations of the mine, the investigation has focused on increasing the dump capacity through the implementation of benches. In this research work, the stability of the waste dump has been investigated using the limit equilibrium method with the Slide3D software, along with a Monte Carlo simulation approach for probabilistic analysis. The results obtained from these methods have been compared with each other. The acceptable safety factor considered for this assessment ranges from 1.15 to 1.2. By adding benches to the eastern waste dump of the mine, a displaced volume equivalent to 36,715.565 cubic meters has been added to the capacity. The constructed model is based on the topography of the area, with dimensions of 1850 meters in length, 1750 meters in width, and 160 meters in height. The results indicate that the safety factor of the waste dump has been calculated as follows using the Spencer, Janbu, and Bishop methods respectively: 1.26, 1.199, and 1.226. Mine No. 4 needs to extract 983.58 million tons of waste to produce 73 million tons of iron ore. In total, by discharging 428 million tons of waste in the northeastern and eastern dumps and adding a bench, a volume of 555.571 million tons of waste is available for disposing of the remaining waste. Considering the remaining waste volume, space must be allocated for waste disposal to Mine No. 4.
Rock Mechanics
M. Noroozi; R. Rafiee; M. Najafi
Abstract
Various structural discontinuities, which form a discrete fracture network, play a significant role in the failure conditions and stability of the rock masses around underground excavations. Several continuum numerical methods have been used to study the stability of underground excavations in jointed ...
Read More
Various structural discontinuities, which form a discrete fracture network, play a significant role in the failure conditions and stability of the rock masses around underground excavations. Several continuum numerical methods have been used to study the stability of underground excavations in jointed rock masses but only few of them can take into account the influence of the pre-existing natural fractures. In this work, the pre-existing fractures are explicitly modeled as a Discrete Fracture Network (DFN) model, which is fully coupled with the FEM modeling for stability analysis of support systems in a diversion tunnel at the Rudbar Lorestan dam site. Hence, at first, using the surveyed data in the diversion tunnel and an estimation of the suitable probability distribution function on geometric characteristics of the existing joint sets in this region, the 3D DFN model was simulated using the stochastic discrete fracture networks generator program, DFN-FRAC3D. In the second step, a coupled 2D Finite Element Method and the prepared stochastic model were used for analysis of existent (based on technical reports) recommended support systems. The objective here is to grasp the role of the fracture networks on the results of the tunnel stability analysis using FEM modeling and also to compare the results with those obtained through stability analysis without considering the effect of fractures.