Rock Mechanics
Vahab Sarfarazi; Hadi Haeri; Mohammad Fatehi Marji; Gholamreza Saeedi; Amir Namdarmanesh
Abstract
In this paper, the effect of variations in the number and area of the rock bridges on the non-persistent discontinuities is investigated. In this regard, blocks containing rock bridges and joints with dimensions of 15 cm * 15 cm * 15 cm are prepared from plaster. The available rock bridges that have ...
Read More
In this paper, the effect of variations in the number and area of the rock bridges on the non-persistent discontinuities is investigated. In this regard, blocks containing rock bridges and joints with dimensions of 15 cm * 15 cm * 15 cm are prepared from plaster. The available rock bridges that have occupied 0.2, 0.4, and 0.6 of the shear surface show latitudinal extension along the shear surface. There are variations in the number and extension of the rock bridges in the fixed area. For each of the samples, tests are performed on three blocks of the same material, by putting it under various direct normal stresses. Normal stresses were 3.33, 5.55, 7.77 kg/cm2. Also the obtained shear strength by laboratory tests was compared with the outputs of Jenning's criterion and Guo and Qi's criterion to determine the accuracy of these criteria for predicting the shear strength of non-persistent joints. The results show that the tensile crack started in the rock bridge under normal stress of 3.33 kg/cm2. Mixed-mode tensile shear cracks were propagated in the rock bridge under a normal stress of 5.55 kg/cm2, while a pure shear crack developed in the rock bridge under a normal stress of 7.77 kg/cm2. With the increase of normal stress, the number of microfractures increased. The variance in the number of rock bridges in the fixed area of the rock bridge does not affect the friction angle along the shear surface. Furthermore, the cohesion along the shear surface shows a small decrease with the increasing number of rock bridges. Also by the increase in the area of rock bridges, the friction angle along the shear surface remains constant, while at the same time, there is an almost linear increase in cohesion. Guo and Qi's criterion predicts the shear strength of the non-persistent joint exactly close to the shear strength of the physical samples.
Vahab Sarfarazi; Hadi Haeri; Fereshteh Bagheri; Erfan Zarrin ghalam; Mohammad Fatehi Marji
Abstract
The tensile strengths of geomaterials such as rocks, ceramics, concretes, gypsum, and mortars are obtained based on the direct and indirect tensile strength tests. In this research work, the Brazilian tensile strength tests are used to study the effects of length and inclination angle of T-shaped non-persistent ...
Read More
The tensile strengths of geomaterials such as rocks, ceramics, concretes, gypsum, and mortars are obtained based on the direct and indirect tensile strength tests. In this research work, the Brazilian tensile strength tests are used to study the effects of length and inclination angle of T-shaped non-persistent joints on the mechanical and tensile behaviors of the geomaterial specimens prepared from concrete. These specimens have a thickness of 40 mm and a diameter of 100 mm, and are prepared in the laboratory. Two T-shaped non-persistent joints are made within each Brazilian disc specimen. The Brazilian disc specimens with T-shaped non-persistent joints are tested experimentally in the laboratory under axial compression. Then these tests are simulated in the two-dimensional particle flow code (PFC2D) considering various notch lengths of 6, 4, 3, 2, and 1 cm. However, different notch inclination angles of 0, 30, 60, 90, 120, and 150 degrees are also considered. In this research work, 12 specimens with different configurations are provided for the experimental tests, and 18 PFC2D models are made for the numerical studies of these tests. The loading rate is 0.016 mm/s. The results obtained from these experiments and their simulated models are compared, and it is concluded that the mechanical behavior and failure process of these geomaterial specimens are mainly governed by the inclination angles and lengths of the T-shape non-persistent joints presented in the samples. The fracture mechanism and failure behavior of the specimens are governed by the discontinuities, and the number of induced cracks when the joint inclination angles and joint lengths are increased. For larger joints when the inclination angle of the T-shaped non-persistent joint is around 60 degrees, the tensile strength is minimum but as it is closed to 90 degrees, the compressive strengths are maximum. However, an increase in the notch length increase the overall tensile strength of the specimens. The strength of samples decreases by increasing the joint length. The strain at the failure point decreases by increasing the joint length. It is also observed that the strength and failure process of the two sets of specimens and the corresponding numerical simulations are consistence.
Jinwei Fu; Mohammad Reza Safaei; Hadi Haeri; Vahab Sarfarazi; Mohammad Fatehi Marji; Leige Xu; Ali Arefnia
Abstract
In this work, the mechanical behavior of strata deformation due to drilling and surface loading is investigated using a 3D physical model. For this purpose, a scaled-down physical model is first designed. Then the tunnel drilling and support system are built. The subsidence experiments performed due ...
Read More
In this work, the mechanical behavior of strata deformation due to drilling and surface loading is investigated using a 3D physical model. For this purpose, a scaled-down physical model is first designed. Then the tunnel drilling and support system are built. The subsidence experiments performed due to tunnel excavation and loading in a very dense and loose soil are performed. Soil is clayey sand (SC), and the percentages of its components are as sand (S = 1. 41%), gravel (G = 25%), and clay (C = 9.33%). Unstable tunnel support experiments are also carried out using physical simulation. Finally, deformations of soil surface and subsidence of strata are observed and recorded. In the tunnel with segmental support, 18.75% more load is applied than in the unsupported tunnel, and the total subsidence of the strata is reduced by 36.2%. The area of the deformed inner layers is decreased by 74.2%, and the length of the affected area in the largest layer is decreased by 48%. The depth of the cavity created at the surface is 46.66% less.
M. Davood Yavari; H. Haeri; V. Sarfarazi; M. Fatehi Marji; H. A. Lazemi
Abstract
The propagation mechanism of cracks emanating from two holes within the concrete specimens is studied by considering the effects of different lateral compressive stresses. The experimental part of this research work is carried out on some specially prepared pre-cracked specimens with two neighbouring ...
Read More
The propagation mechanism of cracks emanating from two holes within the concrete specimens is studied by considering the effects of different lateral compressive stresses. The experimental part of this research work is carried out on some specially prepared pre-cracked specimens with two neighbouring holes under only a uniaxial compression in the laboratory. The numerical modeling part is performed under both the uniaxial compresion and the lateral confinment by the 2D particle flow code (PFC2D). It is shown that the lateral confinement may change the path of crack propagation in a specimen compared to that of the uniaxially-loaded one. Various senarios of the mixed mode radial crack propagation around the holes are obtained, and both the wing (induced tensile) cracks and secondary (shear) cracks are produced and propagated in various paths due to a change in the confining pressure. The fracturing pattern changes from a single tensile crack to that of the several shear bands by increasing the confining pressure. Also the number of shear cracks is increased by increasing the lateral confinement.On the other hand, as the confining pressure increases, the wing cracks start their growth from the walls and reach the center of the cracks under high confinements.
M. Davood Yavari; H. Haeri; V. Sarfarazi; M. Fatehi Marji; H. A. Lazemi
Abstract
Investigating the crack propagation mechanism is of paramount importance in analyzing the failure process of most materials. This process may be exposed during each kind of loading on the materials. In this work, the cracking mechanism in rock-like materials is studied using the numerical methods and ...
Read More
Investigating the crack propagation mechanism is of paramount importance in analyzing the failure process of most materials. This process may be exposed during each kind of loading on the materials. In this work, the cracking mechanism in rock-like materials is studied using the numerical methods and compared with the experimental test results. However, the mechanism of crack growth in brittle materials such as rocks is influenced by different parameters. This research work focuses on the effect of the initial crack angles on the crack growth paths of these materials. Some cubic samples containing pre-existing cracks are tested in compression by considering different flaw orientations. The specimens are made of cement, water, and sand. Moreover, the mentioned process is numerically simulated using three different methods: the finite difference method for discontinuous bodies or discrete element method, the displacement discontinuity method, and the versatile finite element method. The micro-parameters for simulation are gained by the trial-and-error procedure for the discrete element method. Eventually, the crack growth paths observed in the experiments are compared with the numerically simulated models. The results obtained show that these central cracks propagate in two ways, which are dependent on their initial angle. By increasing the initial crack angle to greater than 30° (α > 30°), the wing crack path moves further away from the initial crack, and by decreasing α to smaller than 30° (α < 30°), only the shear cracks are initiated. Therefore, the validity and accuracy of the results are manifested by comparing all the corresponding results obtained by different methods. Based on these results, it can generally be concluded that the strength of the cubic (rock material) specimens increases with increase in the crack angles with respect to the applied loading direction.
V. Sarfarazi; H. Haeri; M. Fatehi Marji
Abstract
The tensile strength of the anisotropic rock-like material specimens is meastred directly in the laboratory using a new device converting the compressive loading to that of the tensile before the rock breakage. The specially prepared concrete slabs of dimensions 19 cm * 15 cm * 15 cm with a central hole ...
Read More
The tensile strength of the anisotropic rock-like material specimens is meastred directly in the laboratory using a new device converting the compressive loading to that of the tensile before the rock breakage. The specially prepared concrete slabs of dimensions 19 cm * 15 cm * 15 cm with a central hole of 7.5 cm in diameter are tested experimentaly. The specimens are located in the compressive-to-tensile load converting device, and tested under a compressive loading rate of 0.02 MPa/s by the universal testing machine. The cubic slab samples are made in three different configurations to have the directions of 0°, 45°, and -45° with respect to the applied loading direction. In order to compare the direct tensile strength of the concrete samples with that of the indirect measuring tests, some Brazilian tests are also carried out on the concrete disc specimens prepared in the laboratory. By comparing the direct and indirect testing results of the concrete tensile strength, it can be concluded that the direct tensile strength values are somewhat lower than those of the indirect ones. The tensile strength values for the three different configurations of the concrete specimens are nearly the same.