Maysam Abedi; Gholam-Hossain Norouzi; Nader Fathianpour; Ali Gholami
Abstract
This paper describes the application of approximate methods to invert airborne magnetic data as well as helicopter-borne frequency domain electromagnetic data in order to retrieve a joint model of magnetic susceptibility and electrical resistivity. The study area located in Semnan province of Iran consists ...
Read More
This paper describes the application of approximate methods to invert airborne magnetic data as well as helicopter-borne frequency domain electromagnetic data in order to retrieve a joint model of magnetic susceptibility and electrical resistivity. The study area located in Semnan province of Iran consists of an arc-shaped porphyry andesite covered by sedimentary units which may have potential of mineral occurrences, especially porphyry copper. Based on previous studies, which assume a homogenous half-space earth model, two approximate methods involving the Siemon and the Mundry approaches are used in this study to generate a resistivity-depth image of underground geologically plausible porphyry unit derived from airborne electromagnetic data. The 3D visualization of the 1D inverted resistivity models along all flight lines provides a resistive geological unit which corresponds to the desired porphyry andesite. To reduce uncertainty arising from single geophysical model, i.e., the resistivity model acquired from the frequency domain electromagnetic data, a fast implementable approach for 3D inversion of magnetic data called the Lanczos bidiagonalization method is also applied to the large scale airborne magnetic data in order to construct a 3D distribution model of magnetic susceptibility, by which the obtained model consequently confirms the extension of an arc-shaped porphyry andesite at depth. The susceptible-resistive porphyry andesite model provided by integrated geophysical data indicates a thicker structure than what is shown on the geological map while extends down at depth. As a result, considering simultaneous interpretation of airborne magnetic and frequency domain electromagnetic data certainly yield lower uncertainty in the modeling of andesite unit as a potential source of copper occurrences.