Exploration
A. Habibnia; Gh. R. Rahimipour; H. Ranjbar
Abstract
Hanza region is located in the southern part of Urumieh–Dokhtar Metallogenic belt in southeastern Iran. This region includes six known porphyry copper deposits and it is considered as an ore- bearing region from geochemical point of view. The aim of this research is to examine effective processing ...
Read More
Hanza region is located in the southern part of Urumieh–Dokhtar Metallogenic belt in southeastern Iran. This region includes six known porphyry copper deposits and it is considered as an ore- bearing region from geochemical point of view. The aim of this research is to examine effective processing techniques in the analysis of stream sediment geochemical datasets and ASTER satellite images. The processing methods have led to identification of eight new prospective areas. These methods are aimed at providing univariate geochemical maps. The stream sediment geochemical mapping for Cu and Mo was performed by the sample catchment basin approach. The results derived from this approach have been mapped in four classes associated with the first quartile, third quartile and threshold values obtained from Median Absolute Deviation method. False-colour composite and band ratio techniques were adopted as two well-known methods for the processing of an ASTER scene spanning the study area. Eight new targets for possible mineralization have been resulted from geochemical data analyses. Image processing techniques on the ASTER multispectral data have also revealed widespread hydrothermal alterations associated with the known porphyry copper deposits and the new prospects.
Exploration
M. Honarmand; H. Ranjbar; H. Shahriari; F. Naseri
Abstract
This research was performed with the objective of evaluating the accuracy of spectral angle mapper (SAM) classification using different reference spectra. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) digital images were applied in the SAM classification in order to map the ...
Read More
This research was performed with the objective of evaluating the accuracy of spectral angle mapper (SAM) classification using different reference spectra. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) digital images were applied in the SAM classification in order to map the distribution of hydrothermally altered rocks in the Kerman Cenozoic magmatic arc (KCMA), Iran. The study area comprises main porphyry copper deposits such as Meiduk and Chahfiroozeh. Collecting reference spectra was considered after pre-processing of ASTER VNIR/SWIR images. Three types of reference spectra including image, USGS library, and field samples spectra were used in the SAM algorithm. Ground truthing and laboratory studies including thin section studies, XRD analysis, and VNIR-SWIR reflectance spectroscopy were utilized to verify the results. The accuracy of SAM classification was numerically calculated using a confusion matrix. The best accuracy of 74.01% and a kappa coefficient of 0.65 were achieved using the SAM method using field samples spectra as the reference. The SAM results were also validated with the mixture tuned matched filtering (MTMF) method. Field investigations showed that more than 90% of the known copper mineralization occurred within the enhanced alteration areas.