Exploration
Irshad Khan; Afayou Afayou; Naeem Abbas; Asghar Khan; Numan Alam; Kausar Sultan Shah
Abstract
The study utilizes the Limit Equilibrium Method (LEM) to investigate slope movements. These movements were initially generated by construction activities at the slope's base, and subsequent events were driven by seismic activities, as the study studied area lies within the Main Karakoram Thrust (MKT) ...
Read More
The study utilizes the Limit Equilibrium Method (LEM) to investigate slope movements. These movements were initially generated by construction activities at the slope's base, and subsequent events were driven by seismic activities, as the study studied area lies within the Main Karakoram Thrust (MKT) and Main Mantle Thrust (MMT) zones. Soil samples, characterized by a moisture content of 13% and a dry unit weight of 18.14 kN/m³ were analyzed. The study revealed that an increase in saturation caused by rainwater infiltration, resulted in a reduction in unconfined compression strength, decreasing from 712 kPa to 349 kPa. The shear strength and deformation parameters (cohesion, angle of internal friction, and deformation modulus) were also examined with varied degrees of saturation. The results revealed a decrease in these parameters as the percentage of saturation increased from 30% to 90%. The slope stability study revealed that the Factor of Safety (FOS) reduced from 1.85 to 0.86 as the saturation of the material raised from 30% to 90%. To assess the influence of unit weight, cohesion, and angle of internal friction on the FOS, multiple cases were considered. The analysis revealed that the FOS increased with higher cohesion and angle of internal friction, while an increase in unit weight resulted in a lower factor of safety. Furthermore, stability of the slope was evaluated by modifying the slope geometry such as lowering the height. According to the GeoStudio investigation, the slope remained steady even at saturation levels exceeding 80%.
Kausar Sultan shah; Mohd Hazizan bin Mohd Hashim; Hafeez Ur Rehman; Kamar shah bin Ariffin
Abstract
The significance of rock failure can be found from the fact that microfracture genesis and coalescence in the rock mass results in macroscale fractures. Rock may fail due to an increase in the local stress, natural fractures, weathering inducing micro-crack genesis, coalescence, and propagation. Therefore, ...
Read More
The significance of rock failure can be found from the fact that microfracture genesis and coalescence in the rock mass results in macroscale fractures. Rock may fail due to an increase in the local stress, natural fractures, weathering inducing micro-crack genesis, coalescence, and propagation. Therefore, a comprehensive understanding of the micro-scale failure mechanism of various weathering grade sandstones based on micro-level observation and microstructure-based simulation is essential. The microscale failure response of various weathering grade sandstones is studied under the wet and dry cycles. Each sample is tested for the micro-structure and micro-fracture characteristics using the image analysis. Furthermore, the micrographs obtained are also used to create the microstructure-based models, which are then simulated in the ANSYS software. The findings indicate that the moderately weathered sandstones indicate less weight reduction than the slightly weathered sandstone. The results obtained also demonstrate that the wet and dry cycles have little effect on the particle shape and size. However, variation in the particle shape and size implies that this is a result of the prevailing interaction of rock and water particle. The microscale simulation reveal that both UCS and BTS decrease from 37 MPa to 19 MPa and 9 MPa to 4 MPa as the density of the micro-structure increases. The results reveal that the primary fracture deviation from the loading axis increases with increasing density in the micro-structural micro-structures, although this effect reduces with further increasing density in the micro-structures.