Mineral Processing
Nooshin Navi; Mohammad Karamoozian; Mohammad Reza Khani
Abstract
Red mud is an important solid tailing with strong alkalinity that is obtained during the extraction of alumina in the Bayer process. The global reserve of red mud is more than 4 billion tons, and its disposal as tailing has always been a serious environmental problem. This tailing is considered as a ...
Read More
Red mud is an important solid tailing with strong alkalinity that is obtained during the extraction of alumina in the Bayer process. The global reserve of red mud is more than 4 billion tons, and its disposal as tailing has always been a serious environmental problem. This tailing is considered as a potential source, due to its high content of valuable metal compounds including iron. In this research work, the extraction of iron in red mud is investigated by the method of reduction roasting. The main influencing factors are also investigated. These methods include reduction in muffle and tube furnace, and temperature, reduction agent, and additive type are as important factors. Reduction roasting of the samples in a tube furnace, with Argon gas and vacuum, a mixture of red mud, graphite, and sodium carbonate at 700–1000 °C results in the formation of Fe3O4. Magnetic measurements indicate that saturation magnetization increases from 0.239 to 38.205 emu/g due to the formation of Fe3O4. Applying the magnetic field intensity of about 1000 Gauss results in the iron recovery of 89.9%.
Mineral Processing
M. R. Khani; M. Karamoozian
Abstract
In the present work, we investigated and optimized the digestion efficiency, A/S (Al2O3/SiO2 in red mud), and N/S (Na2O/SiO2 in red mud) of mixed bauxite in Iran Alumina Company using the Bayer process. Digestion experiments were carried out in an induction rotary autoclave on a mix of Jajarm, Yazd, ...
Read More
In the present work, we investigated and optimized the digestion efficiency, A/S (Al2O3/SiO2 in red mud), and N/S (Na2O/SiO2 in red mud) of mixed bauxite in Iran Alumina Company using the Bayer process. Digestion experiments were carried out in an induction rotary autoclave on a mix of Jajarm, Yazd, Tash, and Shirin Cheshmeh bauxites. A 4-factor 3-level response surface methodology was applied for the design and analysis of the experiment with the optimization of Na2O concentration, digestion temperature, residence time, and amount of lime addition. Towquadratics and one linear model were derived for the prediction of digestion efficiency, and A/S and N/S responses. The results obtained showed that the optimum amounts for Na2O concentration, temperature, amount of lime addition and residence time were 180 g/L, 275°C, 7.73%, and 50 minutes, respectively, in which the digestion efficiency, A/S, and N/S reached 72.05%, 1.169, and 0.27, respectively. Validation experiment showed that the digestion efficiency, A/S, and N/S were 72.24%, 1.162, and 0.28% respectively, which meant a 2% increase in digestion efficiency and a 0.09 and 0.02 decrease in A/S and N/S, respectively, compared to the current operating condition.