A. Alipour; A. A. Khodaiari; A. Jafari; R. Tavakkoli-Moghaddam
Abstract
Open-Pit Production Scheduling (OPPS) problem focuses on determining a block sequencing and scheduling to maximize Net Present Value (NPV) of the venture under constraints. The scheduling model is critically sensitive to the economic value volatility of block, block weight, and operational capacity. ...
Read More
Open-Pit Production Scheduling (OPPS) problem focuses on determining a block sequencing and scheduling to maximize Net Present Value (NPV) of the venture under constraints. The scheduling model is critically sensitive to the economic value volatility of block, block weight, and operational capacity. In order to deal with the OPPS uncertainties, various approaches can be recommended. Robust optimization is one of the most applicable methods in this area used in this study. Robust optimization based on the box counterpart formulation is applied to deal with the OPPS problem. To have a comparison between the solutions of the box counterpart optimization model and the deterministic model, a Two-Dimensional (2D) numerical study of a hypothetical open-pit mine is conducted followed by additional computations on the actual large-scale instances (Marvin orebody). This investigation shows that the different features of the robust planning under uncertainty can be scheduled. Also the price of robustness is obtained in different levels of conservatism.
Ali Asghar khodaiari; A Jafarnejad
Abstract
Maximizing economic earnings is the most common goal in cut-off grade optimization of open-pit mining operations. When this is the case, the price of the product has a critical effect on optimum value of cut-off grade. This paper investigates the relationship between optimum cut-off grade and price to ...
Read More
Maximizing economic earnings is the most common goal in cut-off grade optimization of open-pit mining operations. When this is the case, the price of the product has a critical effect on optimum value of cut-off grade. This paper investigates the relationship between optimum cut-off grade and price to maximize total cash flow and net percent value (NPV) of operation. In order to visualize this relationship, two hypothetical mines were employed. To determine the optimum value of cut-off grade in different cases, two nonlinear programming models were formulated, and then, all models were solved using Solver in Excel. The results show that the optimum cut-off grade would always be a descending function of price when we intend to maximize total cash flow. On the other hand, this function may be descending or ascending when we intend to maximize NPV. This result also reveals that both maximum cash flow and maximum NPV always increase and decrease, respectively when the price of product increases or decreases.