Demet Demir Sahin; Ibrahim Cavusoglu; Ali Osman Yilmaz
Abstract
Today, energy produced from coal is economical compared to other sources but it faces a very serious waste problem. However, these wastes are evaluated by using them as mineral additives in cement, which leads to lower cement costs, saving resources, producing environmentally friendly cement, reducing ...
Read More
Today, energy produced from coal is economical compared to other sources but it faces a very serious waste problem. However, these wastes are evaluated by using them as mineral additives in cement, which leads to lower cement costs, saving resources, producing environmentally friendly cement, reducing CO2 gas, and producing high-strength cement. In this work, the pozzolanic properties of different types of fly ash (Afşin Elbistan C type and Çayırhan F type) are investigated. The fly ashes used in the study are first subjected to the milling process (10, 20, 30, 45, and 60 minutes), and then the 28 and 90-day pozzolanic activity index tests of the milled and unmilled ashes are performed. The results obtained show that the 28-day pozzolanic activity value of the ashes subjected to 20-, 30-, 45-, and 60-minute milling times are higher than the value specified in the standard, compared to the unmilled and 10 min milled fly ash. In addition, for all fly ash samples, the 90-day pozzolanic activity index results show that while the pozzolanic activity index value of Çayırhan (ÇYH) fly ash is higher than the standard value, that of Afşin Elbistan (AE) fly ash is lower than standard. The outcomes of the present study show that the mechanical properties of the fly ash are generated by the burning of coal increase after milling process, and thus can be used as a mineral additive. With the effect of grinding, both fly ash increase the pozzolanic activity. The results are determined with the experimental results obtained.
G. Kulekci; A. Osman Yilmaz; M. Çullu
Abstract
The aim of this work is to obtain recycled aggregate (RA) from construction debris in order to reduce the rapid consumption of aggregate resources and the environmental impact of these resources. In order to fulfill this aim, the density, porosity, Schmidt hardness test, uniaxial compression resistance, ...
Read More
The aim of this work is to obtain recycled aggregate (RA) from construction debris in order to reduce the rapid consumption of aggregate resources and the environmental impact of these resources. In order to fulfill this aim, the density, porosity, Schmidt hardness test, uniaxial compression resistance, carbonation depth, and ultrasonic p-wave velocity experiments were conducted on different construction debris transported by trucks from 9 different points in Turkey. In addition, the debris samples taken were broken down to the size of the aggregate and subjected to the tests of density, porosity, moisture content, freeze-thaw, and impact resistance. As a result of the conducted experiments, the lowest mass loss as a result of freezing-thawing was in GRA with 9.36%, the highest mass loss was in ORA with 22.58%, the highest ORA average aggregate impact strength index was 21.27%, and the lowest TRA aggregate impact strength index was found to be 18.26%. İt was determined that most of the physical properties of RA obtained from the construction wreckage was within the limit values specified in the literature and that the recycled aggregates could be used instead of natural aggregate. With this work and these results, RA obtained could be used in many areas such as concrete aggregate in the construction sector, underground filling in mining, filling material in gunned concrete, and filling materials on highways.