Jinwei Fu; Mohammad Reza Safaei; Hadi Haeri; Vahab Sarfarazi; Mohammad Fatehi Marji; Leige Xu; Ali Arefnia
Abstract
In this work, the mechanical behavior of strata deformation due to drilling and surface loading is investigated using a 3D physical model. For this purpose, a scaled-down physical model is first designed. Then the tunnel drilling and support system are built. The subsidence experiments performed due ...
Read More
In this work, the mechanical behavior of strata deformation due to drilling and surface loading is investigated using a 3D physical model. For this purpose, a scaled-down physical model is first designed. Then the tunnel drilling and support system are built. The subsidence experiments performed due to tunnel excavation and loading in a very dense and loose soil are performed. Soil is clayey sand (SC), and the percentages of its components are as sand (S = 1. 41%), gravel (G = 25%), and clay (C = 9.33%). Unstable tunnel support experiments are also carried out using physical simulation. Finally, deformations of soil surface and subsidence of strata are observed and recorded. In the tunnel with segmental support, 18.75% more load is applied than in the unsupported tunnel, and the total subsidence of the strata is reduced by 36.2%. The area of the deformed inner layers is decreased by 74.2%, and the length of the affected area in the largest layer is decreased by 48%. The depth of the cavity created at the surface is 46.66% less.