Mahsa Khoshfarman Borji; Ahmad Reza Sayadi; Ehsan Nikbakhsh
Abstract
The iron and steel industry is one of the most resource-intensive and pollutant industries that creates the highest value across all mining and metal industries. While the recent studies provide recommendations to improve sustainable development in this industry, the complexity of the socio-environmental ...
Read More
The iron and steel industry is one of the most resource-intensive and pollutant industries that creates the highest value across all mining and metal industries. While the recent studies provide recommendations to improve sustainable development in this industry, the complexity of the socio-environmental impacts of activities in this industry due to its multi-tier and multi-supply chain structures has given rise to the problem of sustainable steel supply chain network design. This work proposes a new multi-objective mixed-integer linear programming model to integrate sustainability factors with managerial and technical restrictions. The total economic profitability is maximized, while environmental pollution is minimized. There is also a focus on the social and environmental compliance. Accordingly, a novel sustainability assessment system is proposed. The managerial restrictions are also satisfied by maximizing the demand fulfillment priority using a new method. The augmented ε-constraint method is applied to tackle the mathematical problem under study. Finally, a real case study is used. The results obtained 35% and 41% reductions in CO2 and particulate matter emissions, respectively, while the total profit decreases up to 15%. A sensitivity analysis is also performed. In addition, several managerial insights are discussed based on the results.