Mineral Processing
M. Ghanbari; H. Naderi; M. Torabi
Abstract
Solvent extraction of copper from the copper leach solution obtained from the ammoniacal carbonate leaching of the Sarcheshmeh copper concentrate was carried out, and the performance of CP-150, LIX984N, and Kelex100 as well as the effects of different parameters involved were investigated. According ...
Read More
Solvent extraction of copper from the copper leach solution obtained from the ammoniacal carbonate leaching of the Sarcheshmeh copper concentrate was carried out, and the performance of CP-150, LIX984N, and Kelex100 as well as the effects of different parameters involved were investigated. According to the results obtained, the extraction kinetics of all the three extractants was fast. High concentrations (7.5%, V/V) of CP-150 and Kelex100 were required to completely extract copper, while only 1% of LIX984N was sufficient. Addition of hexane to the diluent decreased the capability of CP-150 to extract copper, while it showed less effects on LIX984N and Kelex100. A desirable stripping of copper from the loaded organic phase could be obtained using H2SO4 solution.
H. Amani; H. Naderi
Abstract
Gallium extraction from Jajarm Bayer process liquor (Jajarm, Iran) was investigated using microemulsions. Also the behavior of aluminum was studied as an impurity. Kelex100 (4-ethyl, 1-methyl, 7-octyl, 8-hydroxyquinoleine), iso-decanol and n-butanol, and kerosene were used as the surfactant, co-surfactant, ...
Read More
Gallium extraction from Jajarm Bayer process liquor (Jajarm, Iran) was investigated using microemulsions. Also the behavior of aluminum was studied as an impurity. Kelex100 (4-ethyl, 1-methyl, 7-octyl, 8-hydroxyquinoleine), iso-decanol and n-butanol, and kerosene were used as the surfactant, co-surfactant, and oil phase, respectively. Ternary phase diagrams were produced using various co-surfactants at different C/S ratios. The results obtained show that Winsor II is the predominant region, and the least area was obtained using iso-decanol at C/S = 4. Using n-butanol or iso-decanol at C/S = 2, 100% of gallium was extracted. The equations of the statistical models for the gallium and aluminum extractions using different co-surfactants were calculated. While the highest gallium extraction (100%) was obtained using n-butanol, due to the high co-extraction of aluminum, the lowest separation and enrichment factors were obtained for this system. The highest separation and enrichment factors were obtained using iso-decanol at C/S = 2. The point with the compositions of XAF = 30, XOF = 20, and XC/S = 50 was found to be a suitable choice, and led to 74% and 14% extractions for gallium and aluminum, respectively. An enrichment factor of 5.28 was obtained.
Hojat Naderi; Mahmoud Abdollahy; Navid Mostoufi
Abstract
Kinetics of the chemical leaching of chalcocite from a low-grade copper ore in a ferric sulfate medium was investigated using the constrained least square optimization technique. The experiments were carried out for different particle sizes in both the reactor and column at constant Eh, pH, and temperature. ...
Read More
Kinetics of the chemical leaching of chalcocite from a low-grade copper ore in a ferric sulfate medium was investigated using the constrained least square optimization technique. The experiments were carried out for different particle sizes in both the reactor and column at constant Eh, pH, and temperature. The leaching rate increased with increase in the temperature. About 50% of the Cu recovery was obtained after 2 hours of reactor leaching at 75 o C using the -0.5 mm size fraction. Also about 50% of the Cu recovery was obtained after 60 days of column leaching for the +4-8 mm size fraction. For the fine-particle leaching, the first leaching step was fast, and the rate controlling step was diffusion through the liquid film. The results obtained show that as the leaching proceeds, the chemical reaction control appears. Finally, accumulation of the elemental sulfur layer in the solid product together with the jarosite precipitate causes change in the controlling mechanism to solid diffusion. For the coarse-particle leaching, diffusion through the solid product appeared from the initial days of leaching.