Smily Vishwakarma; Dr Dharmendra; Deven Singh
Abstract
The present study is based on data collection from some of the WWTPs (wastewater treatment plants) of the Himachal Pradesh region, and to investigate the range of physico-chemical characteristics of conventional WWTPs, which receive wastewater from different zones in different cities in Himachal Pradesh. ...
Read More
The present study is based on data collection from some of the WWTPs (wastewater treatment plants) of the Himachal Pradesh region, and to investigate the range of physico-chemical characteristics of conventional WWTPs, which receive wastewater from different zones in different cities in Himachal Pradesh. Five parameters are measured and analyzed in this research work. They are pH, suspended solids (mg/L), biological oxygen demand (mg/L), chemical oxygen demand (mg/L), and oil and grease (mg/L). The parameters are compared seasonally to help improve the performance, and operational conditions of WWTPs are with the standard parameters range according to APHA (American Public Health Association), standard examination methods of water, and wastewater seasonal in parameters. Seasonal variations in physico-chemical properties are noticeable. The study analyzes the physico-chemical parameters of wastewater from various Sewage Treatment Plants (STPs) across six districts in Himachal Pradesh, India, revealing variations in water quality across different seasons and locations. The study highlights the need for proper treatment and management of wastewater to prevent environmental pollution and protect public health. The findings could be useful for the policy-makers and authorities responsible for wastewater management in the region.
Mineral Processing
M. R. Heydartaemeh
Abstract
In this research work, the Ni-Zn Ferrite Mineral Nanoparticles (NZFMN), as a novel nanoadsorbent, was used for the removal of the Green Malachite (GM) dye from aqueous solutions by in a batch and fixed bed column. Firstly, the NZFMN adsorption properties were investigated. The effects of the process ...
Read More
In this research work, the Ni-Zn Ferrite Mineral Nanoparticles (NZFMN), as a novel nanoadsorbent, was used for the removal of the Green Malachite (GM) dye from aqueous solutions by in a batch and fixed bed column. Firstly, the NZFMN adsorption properties were investigated. The effects of the process parameters including the contact time, adsorbent dosage, solution pH, and GM initial concentration were also studied. Thence, GM was quantitatively evaluated using the Freundlich and Langmuir isotherms and the pseudo-first- and second-order models. The adsorption data for the adsorption equilibrium was found to be described well using the Freundlich isotherm model. The results obtained for the AFM and SEM analyses showed that the particle size was less than 100 nm. Also the BET analysis showed that the surface area for NZFMN was 120 . The results obtained also showed that the adsorption capacity and removal percentage of GM on NZFMN from wastewater was about 90%. Consequently, NZFMN was found to be a good adsorbent for wastewater purification.
K. Seifpanahi Shabani; A. Vaezian
Abstract
In the environment, two main sources of heavy metals are natural backgrounds derived from parent rocks and anthropogenic contamination including mineral industrial wastes, tailing damps of sulfide mines, agrochemicals, and other outputs of industrial activities and factories. In this work, the physico-chemical ...
Read More
In the environment, two main sources of heavy metals are natural backgrounds derived from parent rocks and anthropogenic contamination including mineral industrial wastes, tailing damps of sulfide mines, agrochemicals, and other outputs of industrial activities and factories. In this work, the physico-chemical aspects of the magnetic Nano- mineral surfaces are studied in contrast to acid mine drainage using the multi- -analytical techniques XRF, XRD, BET, SEM, TEM, FT-IR, and AFM before and after adsorption of toxic elements. According to the results obtained, the FT-IR analysis presents a suitable curve, showing that the adsorption site of the sorption is filled with Ni(II) and Cd(II) ions. The results obtained show that the adsorption reaction is due to the high removal of the toxic elements from acid mine drainages.
R. Marandi; F. Doulati Ardejani; H. Amir Afshar
Abstract
The biosorption of heavy metals can be an effective process for the removal of such metal ions from aqueous solutions. In this study, the adsorption properties of nonliving biomass of phanerochaete chrysosporium for Pb (II) and Zn (II) were investigated by the use of batch adsorption techniques. The ...
Read More
The biosorption of heavy metals can be an effective process for the removal of such metal ions from aqueous solutions. In this study, the adsorption properties of nonliving biomass of phanerochaete chrysosporium for Pb (II) and Zn (II) were investigated by the use of batch adsorption techniques. The effects of initial metal ion concentration, initial pH, biosorbent concentration, stirring speed, temperature and contact time on the biosorption efficiency were studied. The experimental results indicated that the uptake capacity and adsorption yield of one the metal ion were reduced by the presence of the other one. The optimum pH was obtained as 6.0. The experimental adsorption data were fitted to both Langmuir and Frundlich adsorption models for Pb (II) and to the Langmuir model for Zn (II) ion. The highest metals uptake values of 57 and 87 mg/g were calculated for Zn (II) and Pb (II) respectively. Desorption of heavy metal ions was performed by 50 mM HNO3 solution. The results indicated that the biomass of phanerochaete chrysosporium is a suitable biosorbent for the removal of heavy metal ions from the aqueous solutions.