K. Sultan shah; M. H. bin Mohd Hashim; H. Rehman; K. S. bin Ariffin
Abstract
Indirect tensile testing is used in order to investigate the effect of particle morphology (shape and size) on the various weathering grade sandstone fracture characteristics. Several fracture characteristics are discussed in depth in this work including the fracture length (FL), fracture deviation area ...
Read More
Indirect tensile testing is used in order to investigate the effect of particle morphology (shape and size) on the various weathering grade sandstone fracture characteristics. Several fracture characteristics are discussed in depth in this work including the fracture length (FL), fracture deviation area (FDA), fracture angle (FA), and fracture maximum deviation distance (FMDD). A tabletop microscope (TTM) is used to measure the particle morphology. The image analysis techniques induce the uncertainty-related particle shape and size. Therefore, the Monte Carlo simulation (MCS) is used in order to incorporate the inherent uncertainties-related particle morphology. The results obtained reveal that the sandstone fracture angle presents an unclear relationship with the particle shape and size. The effect of particle size on FL is completely obvious, and FL increases with the particle size. In contrast, the particle shape and size have an unclear relationship with the fracture characteristics. Furthermore, the sandstone porosity affects the fracture characteristics, which increase with the weathering grade. Moreover, the findings reveal that the Monte Carlo simulation is a viable tool for integrating the inherent uncertainties associated with the particle shape and size.