S. Safari Sinegani; A. Abedi; H. Asghari; A. A. Safari Sinegani
Abstract
Phytoremediation is a technology that uses plants for the remediation of the contaminated soils, sediments, tailings, and groundwaters. In this work, the ability of TrifoliumAlexanderium for the phytoremediation of the tailings soil in the Anjir-Tange coal washing plant was investigated. For this purpose, ...
Read More
Phytoremediation is a technology that uses plants for the remediation of the contaminated soils, sediments, tailings, and groundwaters. In this work, the ability of TrifoliumAlexanderium for the phytoremediation of the tailings soil in the Anjir-Tange coal washing plant was investigated. For this purpose, Trifolium sp. was cultivated in three soils consisting of the tailings dam, an agricultural soil, and a mixed soil. The concentrations of Fe, Cr, Cd, and P, and the factorsTF (translocation factor), BCF (bio-concentration factor), and BAF (bio-accumulation factor) were measured in the soils and plants after the harvest of Trifolium sp. The results obtained showed that BCFs in the agricultural soil, tailings dam, and mixed soil were 10.4, 12.24, and 7.23, respectively. These results also showed that TrifoliumAlexanderiumwas able to accumulate Cd in the root tissues and stabilize it, and thus it can be regarded as an appropriate species for the stabilization of the Cd ions in the contaminants and soils.The results obtained suggest that this plant can be a good candidate for use in the revegetation and phytostabilization of the Cd-contaminated lands in the region.
N Mathiyazhagan; Natarajan D
Abstract
An ex-situ experiment to assess the metal extractive potential of fourteen agriculture plants (Vigna unguiculata, Gossypium hirsutum, Jatropha curcas, etc.) was conducted on Magnesite mines which had above permissible levels of Cadmium and Lead. There was no much difference in the total chlorophyll a ...
Read More
An ex-situ experiment to assess the metal extractive potential of fourteen agriculture plants (Vigna unguiculata, Gossypium hirsutum, Jatropha curcas, etc.) was conducted on Magnesite mines which had above permissible levels of Cadmium and Lead. There was no much difference in the total chlorophyll a and b, carbohydrate and protein contents in the plants grown in the mining soil and adjacent control area (farm soil). While considering the phytoextractive potential, among the 14 plants studied, V. ungiculata, O. sativa, S. bicolour, S. indium, R. communis, M. uniflorum, G. hirsutum and J. curcas contained considerable amount of heavy metals Cd and Pb other test plants. The experiment confirms that these plants have potential to accumulate the toxic trace elements from soil especially mining waste or dump. The subsequent confirmation studies on their metal tolerant index, metal transfer factor, translocation factor and MREI index values auger their potential phyto-extractive properties. The present study will pave way for in depth related studies in future.