Exploitation
Moein Bahadori; Moahammad Amiri Hosseini; Iman Atighi
Abstract
As open-pit mining advances, the decreasing separation between blast blocks and surface structures necessitates rigorous control of induced ground vibrations to mitigate structural risks. This study performed 13 single-hole blasting operations at the Golgohar Sirjan Iron Mine processing plant to evaluate ...
Read More
As open-pit mining advances, the decreasing separation between blast blocks and surface structures necessitates rigorous control of induced ground vibrations to mitigate structural risks. This study performed 13 single-hole blasting operations at the Golgohar Sirjan Iron Mine processing plant to evaluate vibration control strategies for protecting the onsite processing plant. A Blastmate III seismograph was employed to record 54 three-component data sets, including waveform data, maximum amplitude, and dominant frequencies. By superimposing waves, optimal delay times (ODT) for the blast holes were determined and the corresponding effects on wave frequencies were analyzed. An experimental blasting pattern was designed based on the derived ODT values, and the impact on ground vibration was examined. The results indicated a 10% reduction in vibration levels with the proposed delay times. Furthermore, considering the minimum distance of 111 meters from the processing plant to the final pit and adhering to the DIN safety standard, it is recommended that blast holes with a maximum diameter of 165mm be used to ensure a safety factor of 15%. For distances exceeding 187 meters, blast holes with a 250mm diameter are recommended to maintain production efficiency and a safety factor of 50%.
Exploitation
R. Shamsi; M. S. Amini; H. Dehghani; M. Bascompta; B. Jodeiri Shokri; Sh. Entezam
Abstract
This paper attempted to estimate the amount of flyrock in the Angoran mine in Zanjan province, Iran using the gene expression programming (GEP) predictive technique. The input data, including flyrock, mean depth of the hole, powder factor, stemming, explosive weight, number of holes, and booster were ...
Read More
This paper attempted to estimate the amount of flyrock in the Angoran mine in Zanjan province, Iran using the gene expression programming (GEP) predictive technique. The input data, including flyrock, mean depth of the hole, powder factor, stemming, explosive weight, number of holes, and booster were collected from the mine. Then, using GEP, a series of intelligent equations were proposed to predict flyrock distance. The best GEP equation was selected based on some well-established statistical indices in the next stage. The coefficient of determination for training and testing datasets of the GEP equation were 0.890 and 0.798, respectively. The model obtained from the GEP method was then optimized using teaching– learning-based optimization algorithm (TLBO). Based on the results, the correlation coefficient of training and testing data increased to 91% and 89%, which increased the accuracy of the Equation. This new intelligent equation could forecast flyrock resulting from mine blasting with a high level of accuracy. The capabilities of this intelligent technique could be further extended to the other blasting environmental issues.