Hafeezur Rehman; Ahmad Shah; Mohd Hazizan bin Mohd Hashim; Naseer Muhammad Khan; Wahid Ali; Kausar Sultan Shah; Muhammad Junaid; Rafi Ullah; Muhammad Bilal Adeel
Abstract
The major factors affecting tunnel stability include the ground conditions, in-situ stresses, and project-related features. In this research work, critical strain, stress reduction factor (SRF), and capacity diagrams are used for tunnel stability analysis. For this purpose, eighteen tunnel sections are ...
Read More
The major factors affecting tunnel stability include the ground conditions, in-situ stresses, and project-related features. In this research work, critical strain, stress reduction factor (SRF), and capacity diagrams are used for tunnel stability analysis. For this purpose, eighteen tunnel sections are modelled using the FLAC2D software. The rock mass properties for the modelling are obtained using the RocLab software. The results obtained show that tunnel deformations in most cases are within the safety limit. Meanwhile, it is observed that the rock mass quality, tunnel size, and in-situ stresses contribute to the deformation. The resulting deformations also affect SRF. SRF depends on the in-situ stresses, rock mass quality, and excavation sequence. The capacity diagrams show that the liner experience stress-induced failures due to stress concentration at the tunnel corners. This study concludes that tunnel stability analysis must include an integrated approach that considers the rock quality, in-situ stress, excavation dimensions, and deformations.