Vanshika Bhardwaj; Kanwarpreet Singh
Abstract
Natural hazards are naturally occurring phenomena that might lead to a negative impact on the environment and also on the life of living beings. These hazards are caused due to adverse conditions of weather and climate events, and also due to certain human activities that are harmful to the environment. ...
Read More
Natural hazards are naturally occurring phenomena that might lead to a negative impact on the environment and also on the life of living beings. These hazards are caused due to adverse conditions of weather and climate events, and also due to certain human activities that are harmful to the environment. Natural hazards include tsunamis, earthquakes, volcanic activity, landslides, etc. Among these natural hazards, landslides are among the most common natural hazards resulting in loss of life and property each year, leading to socio-economic impact; thus to avoid such losses, a comprehensive study of landslides is required. Landslides generally occur in hill region with steep slopes, heavy precipitation, loose shear strength of soil or due to many human activities like afforestation or construction activities. To resolve the problem of landslides in a hilly region, much research is conducted annually, providing a predicted landslide susceptibility zonation (LSZ) mapping of the area of research. The predicted landslide susceptibility maps are verified based on the past landslide data, an area under the curve (AUC), and other methods to provide an accurate map for landslide susceptibility in any area. In this study,93 research articles are reviewed for analysis of LSZ, and various observations are made based on the recent trends followed by various researchers over the world over the past ten years. The study can be useful for many researchers to practice their research on landslide susceptibility zonation.
B. A. Mert
Abstract
This paper presents the procedures used for determining and defining the tonnage and grade of the coalfields of Kangal basin from the developed GIS-aided block model. In this work, firstly, all the lithological logs of drill holes and chemical analysis data of core in the basin were analyzed with the ...
Read More
This paper presents the procedures used for determining and defining the tonnage and grade of the coalfields of Kangal basin from the developed GIS-aided block model. In this work, firstly, all the lithological logs of drill holes and chemical analysis data of core in the basin were analyzed with the help of geostatistics, and then the digital raster maps of each one of the attributes such as the thickness, calorific value (LCV), ash content (AC%), moisture content (MC%), and surface maps of lignite seams were mapped in GIS environment. In the second stage, quantities of the overburden and resources with different categories were calculated on the basis of field-based quality and volume queries with the help of the digital maps on GIS platform. As a result, it was estimated that the Kalburçayırı field had a tonnage of 116 Mt of lignite with an LCV of 1308 kcal/kg, the Hamal field had a tonnage of 30 Mt of lignite with an LCV of 987 kcal/kg, and the Etyemez field had a tonnage of 48 Mt of lignite with an LCV of 1282 kcal/kg. Also it was estimated that almost 24,278,151 tons of lignite in the Hamal and Etyemez fields had a quality of less than 950 kcal/kg that could be directly fired without the blending process in the power plant. As a consequence, the Hamal and Etyemez fields should go into production as soon as possible and be fired in the power plant after being mixed with the lignite in the Kalburcayırı field so that they can be redounded to economy.
M. Ziaii; A. Abedi; M. Ziaei; A. Kamkar Rouhani; A. Zendahdel
Abstract
One of the major strengths of a Geographic Information System (GIS) in geosciences is the ability to integrate and combine multiple layers into mineral potential maps showing areas which are favorable for mineral exploration. These capabilities make GIS an extremely useful tool for mineral exploration. ...
Read More
One of the major strengths of a Geographic Information System (GIS) in geosciences is the ability to integrate and combine multiple layers into mineral potential maps showing areas which are favorable for mineral exploration. These capabilities make GIS an extremely useful tool for mineral exploration. Several spatial modeling techniques can be employed to produce potential maps. However, these methods can be divided into knowledge -and data-driven techniques. The goal of this study is to use GIS in mapping gold deposit potentials in Torud-Chah Shiran area. After collecting relevant exploration data and defining appropriate exploration model for the mineralization zone, several layers including proved mineralization map, geological map, remote sensing derived, alteration map, geochemical and aeromagnetic maps were imported in to GIS environment. For integrated exploration modeling, two methods were used: fuzzy logic and weight of evidence methods. Finally, the results of the two methods were compared. The result of each method had statistical problems but these problems were alleviated using the map of differences that was in a good agreement with reality.