M. Ansari; M. Hosseini; A. R. Taleb Beydokhti
Abstract
Rock abrasivity, as one of the most important parameters affecting the rock drillability, significantly influences the drilling rate in mines. Therefore, rock abrasivity should be carefully evaluated prior to selecting and employing drilling machines. Since the tests for a rock abrasivity assessment ...
Read More
Rock abrasivity, as one of the most important parameters affecting the rock drillability, significantly influences the drilling rate in mines. Therefore, rock abrasivity should be carefully evaluated prior to selecting and employing drilling machines. Since the tests for a rock abrasivity assessment require sophisticated laboratory equipment, empirical models can be used to predict rock abrasivity. Several indices based on five known methods have been introduced for assessing rock abrasivity including rock abrasivity index (RAI), Cerchar abrasivity index (CAI), Schimazek’s abrasivity factor (F-abrasivity), bit wear index (BWI), and LCPC abrasivity coefficient (LAC). In this work, 12 rock types with different origins were investigated using the uniaxial compressive strength (UCS), Brazilian test for tensile strength, and longitudinal wave velocity and LCPC tests, and microscopic observations were made to obtain a correlation for estimating the LCPC abrasivity coefficient by conducting the conventional rock mechanics tests. Using the equivalent quartz content, velocity of longitudinal waves, and rock brittleness index, a linear correlation was obtained with a coefficient of determination (R2) of 93.3% using SPSS in order to estimate LAC.
Rock Mechanics
M. Hosseini
Abstract
Temperature has a significant role in many actions performed on rocks. An example would be the effect of temperature on rocks in the burial of nuclear waste, geothermal energy extraction, deep oil well drilling, and fires in tunnels. In addition, due to diurnal/nocturnal as well as seasonal temperature ...
Read More
Temperature has a significant role in many actions performed on rocks. An example would be the effect of temperature on rocks in the burial of nuclear waste, geothermal energy extraction, deep oil well drilling, and fires in tunnels. In addition, due to diurnal/nocturnal as well as seasonal temperature variations, rocks undergo a process of heating and cooling. In the present work, the effect of temperature as well as heating and cooling cycles on the rock properties was studied. The utilized samples included tuff, andesite, and sandstone. In addition to natural samples, concrete was also studied in this research work. The aim of this work was to evaluate the effect of temperature on the tensile strength of rocks and the velocity of longitudinal waves in a single heating and cooling cycle of samples as well as evaluating the effect of the number of heating and cooling cycles on the tensile strength of rocks and the velocity of longitudinal waves. In order to investigate the effect of temperature on the tensile strength of rocks as well as the velocity of longitudinal waves in a single heating and cooling cycle, the samples were heated in a furnace. After cooling the samples, the Brazilian and the sound velocity tests were carried out on them. These tests were conducted at the three temperatures of 100, 200, and 300 °C. In order to examine the effect of the number of heating and cooling cycles on the tensile strength and the velocity of longitudinal waves, the samples were heated up to the temperature of 100 °C and then cooled down in order to reach the room temperature. In this case, the work was conducted in the three modes of 5, 10, and 15 cycles. The test results showed that the velocity of longitudinal waves and the tensile strength of samples decreased but their porosity increased. Reduction in the tensile strength varied in different rocks so that the greatest and lowest reduction in the tensile strength was observed in concrete and andesite, respectively.
Exploitation
E. Ghasemi
Abstract
In underground excavation, where the road-headers are employed, a precise prediction of the road-header performance has a vital role in the economy of the project. In this paper, a new model is developed for prediction of the road-header performance using the non-linear multivariate regression analysis. ...
Read More
In underground excavation, where the road-headers are employed, a precise prediction of the road-header performance has a vital role in the economy of the project. In this paper, a new model is developed for prediction of the road-header performance using the non-linear multivariate regression analysis. This model is able to estimate the instantaneous cutting rate (ICR) of roadheader based on rock properties such as Brazilian tensile strength (BTS), rock mass cuttability index (RMCI), and alpha angle (α: is the angle between the tunnel axis and the planes of weakness). In order to construct and test the proposed model, a database including 62 cutting cases is used in the Tabas coal mine No. 1 in Iran. Various statistical performance indices were employed to evaluate the model efficiency. The results obtained indicate that the proposed non-linear regression model can be efficiently used to predict the road-header cutting performance. Furthermore, the prediction capacity of this model is better than the empirical models developed previously. Finally, it should be noted that the developed model is site-specific, and it can be used for preliminary estimation of ICR in future phases of Tabas coal mine No. 1. The outcome of this model can be helpful in adjustment of time-scheduling of the project.
A. Ramezanzadeh; M. Hood
Abstract
The first step in mining activities is rock excavation in both mine development and production. Constant pressure for cost reduction and creating an improved/safe work environment for personnel has naturally resulted in increased use of mechanical excavation systems in many mining operations. Also, mechanical ...
Read More
The first step in mining activities is rock excavation in both mine development and production. Constant pressure for cost reduction and creating an improved/safe work environment for personnel has naturally resulted in increased use of mechanical excavation systems in many mining operations. Also, mechanical excavation and mining is more compatible with automation, meaning possibility of reduction in number of people in the active underground mines. This factor plays a major role in selection of mining systems especially considering the dire shortage of skilled labour in the industry. While these systems are an integral part of mining activities in underground soft rock mining (coal, salt, potash, trona etc.), there is a need for developing new approaches and machinery for use in the underground hard rock mining. This paper will offer a review of current and emerging technologies for mechanical hard rock excavation, including disc cutting technology, drag picks, mini-disc, and activated/oscillating disc cutter. A review of general guidelines for assessment of the potentials of new research and development on this topic and evaluation of emerging technologies for a specific mining application will also be offered.