Environment
Kushai Caleb Aluwong; Mohd Hazizan bin Mohd Hashim; Suhaina Ishmail
Abstract
In the past, assessing water quality has typically involved labor-intensive and costly processes such as laboratory analysis and manual sampling, which do not provide real-time data. In addition to tasting bad, drinking acidic water on a regular basis can result in acid reflux and recurrent heartburn ...
Read More
In the past, assessing water quality has typically involved labor-intensive and costly processes such as laboratory analysis and manual sampling, which do not provide real-time data. In addition to tasting bad, drinking acidic water on a regular basis can result in acid reflux and recurrent heartburn while high total dissolved solids water can cause kidney stones, especially when the hard water content is more than 500ppm. With growing concerns about water quality, there is a need for continuous monitoring of pH and TDS levels in surface and groundwater sources. To address this, a cutting-edge wireless sensor system leveraging on Internet of Things (IoT) technology has been developed. This system incorporates top-notch pH and TDS sensors known for their accuracy, durability, and environmental compatibility. Integrated with microcontrollers featuring wireless communication capabilities, these sensors enable seamless data transmission to a central server through IoT protocols like cellular networks. The collected data is processed and calibrated to ensure reliability and precision. The IoT platform connected to the central server manages device connectivity, data storage, and analysis, making real-time data accessible via user-friendly web or mobile applications with interactive graphs and dashboards. Power-saving features are implemented to optimize battery life in remote and off-grid locations, and weather-resistant enclosures protect the sensor nodes from harsh environmental conditions. By deploying this wireless-based sensor system, users can gain valuable real-time insights into water quality in surface and groundwater monitoring locations.
M.R. Shahverdi; A. Khodadadi Darban; M. Abdollahy; Yadollah Yamini
Abstract
Flotation is a common process in sulfide ore beneficiation. Due to the restrictions and lack of access to high-quality water sources for industrial purposes, recycled water plays an important role in the flotation processes. Due to the existence of various organic and inorganic substances in the process, ...
Read More
Flotation is a common process in sulfide ore beneficiation. Due to the restrictions and lack of access to high-quality water sources for industrial purposes, recycled water plays an important role in the flotation processes. Due to the existence of various organic and inorganic substances in the process, water influences the flotation performance. In this work, the effect of accumulation of sulfate ion in processed water on galena flotation was investigated. Flotation experiments using processed water without sulfate ion led to a concentrate containing 40.7% of lead and a maximum recovery of 58.9%. The presence of higher sulfate ion levels (2000 M) in processed water caused a significant decrease in the grade and recovery of the lead concentrate. With 2000 mg/L of sulfate ion, the grade and recovery of lead decreased from 40.7 to 24.3% and from 58.9 to 32.1 %, respectively. Thermodynamic calculations showed that when the sulfate ion concentration was increased from 300 to 2000 ppm, it was more likely that lead sulfate (solid) was formed. With increase in the xanthate ion concentration from 10-6 to 10-4 M, could be substituted by . On the basis of the results obtained, it was concluded that in order to reduce the negative effects of sulfate ion accumulation in water and increase the efficiency of the galena flotation process, higher dosages of xanthates should be added to the system.
E. von Sperling; C.A.P. Grandchamp
Abstract
The paper presents the case study of the current formation of a Brazilian pit lake from an iron ore mining activity. The water used for the filling of the lake comes from rain, ground water and the complementary pumpage from a close river. At its final stage, which will be reached around year 2018, Lake ...
Read More
The paper presents the case study of the current formation of a Brazilian pit lake from an iron ore mining activity. The water used for the filling of the lake comes from rain, ground water and the complementary pumpage from a close river. At its final stage, which will be reached around year 2018, Lake Aguas Claras will have a surface area of 0.67 km2 and the depth of 234 m, which will make it the deepest lake in the country. The filling of the lake began in the year 2001 and a monthly monitoring programme (physical, chemical and biological characteristics) is since then in course Theanalyses show that Lake Âguas Claras presents a very good water quality (well oxygenated, low values of colour and turbidity, limited degree of mineralization, pH slightly alkaline, low nutrient concentrations, excellent bacteriological conditions), together with a remarkable shift in the dominance of phytoplanktonic groups, indicating the high instability of lakes that are undergoing a process of formation. One relevant point in the management of this valuable water resource is to create adequate conditions for the protection of the aquatic environment. Considering the very probable maintenance of these favourable characteristics in future years, the possible uses of the lake will be directed to recreation (swimming, diving, sailing and fishing), amenity value and water supply.