Environment
G.U Sikakwe
Abstract
In this work, the concentrations of the potentially toxic elements in stream sediments in SE Nigeria were assessed for pollution monitoring in mining, quarrying, and farming areas. The levels of iron, molybdenum, vanadium, copper, lead, zinc, nickel, cobalt, manganese, chromium, barium, and beryllium ...
Read More
In this work, the concentrations of the potentially toxic elements in stream sediments in SE Nigeria were assessed for pollution monitoring in mining, quarrying, and farming areas. The levels of iron, molybdenum, vanadium, copper, lead, zinc, nickel, cobalt, manganese, chromium, barium, and beryllium were determined. The concentrations of the elements were in the order of Fe > Ba > Mn > Cr > Zn > Pb > Cu > Co > Ni > As > Mo. There were significant positive correlations at P < 0.01 between Mo and Cu (r = 0.734), Mo and Pb (r = 0.811), and Cu and Pb (r = 0.836). The others were between Cu and V (r = 0.748), Pb and V (r = 0.793), Fe and V (r = 0.905), Fe and Be (r = 0.703), V and Be (r = 0.830), Cu and Pb (r = 0.778), and Fe and V (r = 0.905). The geoaccumulation index values were classified as polluted (0-1) to moderately polluted (1-2). The enrichment factors fell into moderate, significant, and very high enrichment. Pb, Co, and Ba attained significant enrichment factors. The potential ecological risk showed a strong risk level "C" in only three locations. Arsenic was a strong factor carrying risk. The potential ecological risk (EiR) trend was EiR (AS) > EiR (Pb)> EiR (Cu) > EiR (Co) > EiR (Cr) > EiR (V) > EiR (Ni) > EiR (Zn). Ba, Pb, and As should be monitored further to determine their source and recommend possible remedial measures. The result of this work could be used to improve water management efficiency and serve as a benchmark of vulnerability assessment of the studied area. This could also be useful for future impact assessment and adequate planning of mining and farming areas. In addition, the result obtained could assist the scientists to make appropriate environmental management strategies to reduce the influence of metal contamination triggered from the mining sites and farming areas both in Nigeria and globally.
M. Otari; R. Dabiri
Abstract
Heavy metal concentration in the soils and sediments has increased worldwide during the last century due to the mining, smelting, and industrial activities. The Forumad chromite deposit is located in the Sabzevar ophiolitic complex (SOC), with a long history of mining activities, yet very little is known ...
Read More
Heavy metal concentration in the soils and sediments has increased worldwide during the last century due to the mining, smelting, and industrial activities. The Forumad chromite deposit is located in the Sabzevar ophiolitic complex (SOC), with a long history of mining activities, yet very little is known about the heavy metal contamination in its surrounding environment. In this research work, the soil pollution by heavy metals was investigated with respect to the geochemical, statistical, and environmental indicators over the chromite mine in Forumad. The concentrations of heavy metals were analyzed, and the results obtained showed that the mean concentrations of Cr (5837.5 ppm) and Ni (570.7 ppm) in the nearby soils and sediments were significantly high. On the other hand, the mean concentrations of the other heavy metals present such as As, Cd, Co, Cu, Pb, and V were close to the geological background values. The multivariate statistical analyses (Pearson coefficient analysis, Cluster analysis, and principal component analysis) were used to understand the various anthropogenic and geological (lithogenic) sources. Our geochemical and environmental assessments suggested that Cr, Ni, Co, and V had similar properties, and their presence in the soils was mainly from the ultramafic rocks and chromite deposits. However, the calculated enrichment factors for Cr and Ni were more than 10, suggesting their anthropogenic sources due to the mining activities. The significant Cr and Ni contaminations in the Forumad nearby soils indicated that the status of heavy metal contaminations of the area should receive further considerations in the metal mine areas throughout SOC.