F. Ghadimi; A. Hajati; A. Sabzian
Abstract
The Mighan playa/lake is characterized as a closed catchment. In the recent years, the rapid industrialization and urbanization has resulted in a pollution area in the city of Arak. In this work, we focus on six regions around the playa/lake to study the distribution of heavy metals in the waters and ...
Read More
The Mighan playa/lake is characterized as a closed catchment. In the recent years, the rapid industrialization and urbanization has resulted in a pollution area in the city of Arak. In this work, we focus on six regions around the playa/lake to study the distribution of heavy metals in the waters and their contamination risk. A total of 32 water samples are analyzed to determine the contamination degree of heavy metals, i.e. Hg, As, Cd, Cr, Cu, Pb, and Zn. The heavy metal pollution index, heavy metal evaluation index, and degree of contamination are utilized to assess the pollution extent of these metals. The spatial distribution patterns reveal that the waters in different areas of playa/lake are in a good condition. The island, lake in playa, and the Wastewater Mineral Salts Company are most seriously polluted with Pb, being higher than the standard of drinking water quality limit. Water in the wastewater treatment plant is polluted with Hg and As. The correlation matrix, factor analysis, and cluster analysis are used to support the idea that Pb may be mainly derived from the atmospheric input, and As and Hg from the wastewater treatment plant, agricultural lands, and domestic waste. Many native and migratory birds live in the Mighan playa, which is exposed to heavy metals. Therefore, it is required to monitor heavy metals in the Arak playa and to manage the municipal, industrial, and agricultural activities around it and to reduce them.
O.E. Ifelola
Abstract
Metals are ubiquitous within the earth crust. However, the exceptional high-level concentration of heavy metals in the soil due to natural or anthropogenic activities and the chemical forms in which they exist determine the level of risk they portend to the environment. This work was aimed at determining ...
Read More
Metals are ubiquitous within the earth crust. However, the exceptional high-level concentration of heavy metals in the soil due to natural or anthropogenic activities and the chemical forms in which they exist determine the level of risk they portend to the environment. This work was aimed at determining the background level of the presence of seven priority toxic metals (Cr, Ni, Pb, As, Cd, Cu, Zn) in the chemical phases of the overburden topsoil of a bituminous deposit prior to mining activities through the speciation analysis. The grab samples of overburden topsoil were initially obtained and homogenized to composites based on locations for the subsequent sequential extraction procedure (SEP). The specific physico-chemical properties of the sampled soils were simultaneously determined to complement the SEP inferential analysis. The results obtained showed that most metals were spatially bounded to the Fe-Mn oxides (reducible phase) followed by the organic (oxidizable) and the carbonates phases, respectively. Fractionally, the dominant soil texture in the studied area was sand (55.45%); however, the colloidal organic matter and Fe-Mn oxide phases played the dominant roles in the sorption activities of the selected metals. The soil chemical phase with the least metal pool was the exchangeable (water/salt) soluble fraction. The overall assessment revealed that the geogenic heavy metals in the topsoil posed no threats since a marginal fraction of the metals existed in the bio-available form in non-toxic concentrations in the order of Pb > Zn > Cu, while the potential mobility of metals showed that Zn was preferentially higher than Pb and Cu, respectively.
V.F Navarro Torres; G Zamora Echenique; R.N Singh
Abstract
Hydrographically Bolivian Poopó Lake is located in the basin of Desaguadero River and it has over a dozen main tributary rivers and other smaller rivers with lower flow. The mine water discharge from the abandoned and current mining activities polluted these rivers by carrying heavy metals, dissolved ...
Read More
Hydrographically Bolivian Poopó Lake is located in the basin of Desaguadero River and it has over a dozen main tributary rivers and other smaller rivers with lower flow. The mine water discharge from the abandoned and current mining activities polluted these rivers by carrying heavy metals, dissolved and suspended solids which in turn polluted the Poopó Lake which is considered as an important Lake in this area. The present paper deals with the environmental hazards associated with the mining activities with an objective of determining the environmental quality of the Poopó Lake and its tributary rivers, based on physical-chemical analysis of superficial water and sediment samples. The results of the research show that the Poopó Lake water quality can be classified as highly saline, containing high concentration of dissolved or suspended solid, as well arsenic, lead, cadmium, zinc and other heavy metals exceeding the permissible limits of pollutants. Desaguadero River contributed to the Poopó Lake pollution by 70% arsenic, 64% lead, 4.27% zinc and 2.18% cadmium. Other important pollution contributors are Antequera River by 57 % zinc, 32.9 % cadmium and 0.66% lead, and Huanuni River by 61.2% cadmium, 2.23% lead and 34.3% zinc. Vinto foundry, Kori kollo mine and mainly San José mine polluted the Poopó Lake by arsenic and lead through Desaguadero River. Bolivar and Huanuni mines polluted the Poopó Lake by cadmium and zinc through Antequera and Huanuni Rivers. Additionally the mining activities continue to pollute the Poopó Lake by dissolved and suspended solids transporting through Desaguadero, Antequera and Huanuni rivers.