Rock Mechanics
Aram Ardalanzdeh; Seyed Davoud Mohammadi; Vahab Sarfarazi; Hossein Shahbazi
Abstract
Creating holes in rocks using different methods presents various challenges. In this research, an attempt was made to investigate these characteristics and the existing problems in creating holes based on the texture and brittleness of the rock. For this purpose, several core specimens were taken from ...
Read More
Creating holes in rocks using different methods presents various challenges. In this research, an attempt was made to investigate these characteristics and the existing problems in creating holes based on the texture and brittleness of the rock. For this purpose, several core specimens were taken from the Alvand granitic batholith of Hamadan, and the petrological and textural indexes of the rocks were determined. There are four types of rock textures, ranging from coarse-grained to fine-grained. The texture coefficients (TC) for the four types of rocks (G1 to G4) were 1.709, 1.730, 1.774, and 1.697, respectively. The brittleness index (B1) for the four types of rocks (G1 to G4) were 9.13, 11.01, 12.07, and 10.65, respectively. After that, using a diamond drill, one hole was created in each rock core specimen, and at the end of drilling, a fracture pit was separated from the bottom of each hole in the specimen. The results show that as the mineral size decreases, the fracture pit depth also decreases, and in porphyry texture, the fracture pit depth is between the fracture pit depths of coarse-grained and medium-grained rocks. As the texture coefficient (TC) and brittleness of the rock specimens increase, the fracture pit depth decreases, and in porphyry texture, the fracture pit depth remains between the fracture pit depths of coarse-grained and medium-grained rocks. Finally, the results from laboratory tests indicate that creating holes using a drill to study the effect of the holes on rock behavior can cause damage to the rocks.
H. R. Nejati; Seyed A. Moosavi
Abstract
Assessment of the correlation between rock brittleness and rock fracture toughness has been the subject of extensive research works in the recent years. Unfortunately, the brittleness measurement methods have not yet been standardized, and rock fracture toughness cannot be estimated satisfactorily by ...
Read More
Assessment of the correlation between rock brittleness and rock fracture toughness has been the subject of extensive research works in the recent years. Unfortunately, the brittleness measurement methods have not yet been standardized, and rock fracture toughness cannot be estimated satisfactorily by the proposed indices. In the present study, statistical analyses are performed on some data collected from the literature to develop two equations for estimation of modes I and II fracture toughness. Then a probabilistic sensitivity analysis is performed to determine the impact of the input parameters on the output ones. Based on the results obtained for the probabilistic analysis, a new empirical brittleness index including tensile strength, uniaxial compressive strength, and elastic modulus is suggested for estimating modes I and II fracture toughness. The analyses results reveal that the proposed index is capable of estimating rock fracture toughness with more satisfactory correlation compared to the previous indices.