Asghar Azizi; Ali Dehghani; Seyyed Zioddin Shafaei
Abstract
AbstractThe purpose of this study was to investigate the controllable operating parameters influence, including pH, solid content, collector, co-collector, and depressant dose, and conditioning time, on apatite flotation kinetics. Four first order flotation kinetic models are tested on batch flotation ...
Read More
AbstractThe purpose of this study was to investigate the controllable operating parameters influence, including pH, solid content, collector, co-collector, and depressant dose, and conditioning time, on apatite flotation kinetics. Four first order flotation kinetic models are tested on batch flotation time-recovery profiles. The results of batch flotation tests and the fitting of first-order kinetic models to assess the influence of operating parameters on the flotation kinetics indicated that model with fast and slow - floating components and classical model gave the best and the worst fit for experimental data, respectively. Also, rectangular distribution of floatabilities and gamma distribution of floatabilities fitted the experimental data well. In this study, the model with rectangular distribution of floatabilities associated with fractional factorial experimental design was employed to evaluate the effect of six main parameters on kinetic parameters (R_∞, K). The result indicated that linear effects of depressant dose, conditioning time, and the interaction effects of solid concentration and pH statistically were important on ultimate recovery but the significant parameters for flotation rate constant were linear effects of solids content, depressant dosage and the interaction effect between pH and conditioning time. Regression equations obtained to relate between flotation operation and kinetic parameters.
A Igder; Ali Akbar Rahmani; Ali Fazlavi; Mohammad Hossein Ahmadi; Mohammad Hossein Ahmadi Azqhandi; Mohammad Hassan Omidi
Abstract
The main objective of the present study is to investigate the feasibility of using Carboxymethyl chitosan magnetic nanoparticles (CCMN) for the adsorption of Cd2+. The study also reports important parameters, which affect the adsorption process, i.e., pH, adsorbent dose, contact time and concentration ...
Read More
The main objective of the present study is to investigate the feasibility of using Carboxymethyl chitosan magnetic nanoparticles (CCMN) for the adsorption of Cd2+. The study also reports important parameters, which affect the adsorption process, i.e., pH, adsorbent dose, contact time and concentration of Cd2+, using Box-Behnken designs. Firstly, functional carboxymethyl chitosan magnetic nanoparticles (about 33 nm) was prepared by chemical coprecipitating and characterized by means of scanning electron microscope (SEM), X-ray diffraction (XRD), Fourier Transform infrared spectroscopy (FTIR). Then, CCMN was used as the adsorbent for the treatment of effluent. The ANOVA result of the full model shows that pH, adsorbent dosage and metal concentration had a significant effect on metal removal. In addition, this parameters indicates which contact time variable does not have a significant effect (p>0.05).