Exploitation
Abbas Khajouei Sirjani; Ruqyah Heydari; Ramin Rafiee; Mohammad Amiri Hosseini
Abstract
In open-pit mining blasting operations, one of the most critical parameters that must be continuously and precisely monitored and evaluated is the extent of back-break caused by the blasts. This phenomenon can lead to mine wall instability, collapse of mining equipment, increased dilution rates, and ...
Read More
In open-pit mining blasting operations, one of the most critical parameters that must be continuously and precisely monitored and evaluated is the extent of back-break caused by the blasts. This phenomenon can lead to mine wall instability, collapse of mining equipment, increased dilution rates, and disruption in drilling and charging operations in subsequent stages. The objective of this research is to predict and optimize back-break by combining statistical models with the Firefly Algorithm (FA). For this purpose, a database comprising data from 28 blasts in the waste rock section of Gol-e-Gohar Iron Ore Mine No. 1 was compiled. After data collection, the input parameters, including blast hole length, burden, spacing, Stemming, charge per delay, and Number of holes in the last row, were identified and utilized in the modeling process. To predict back-break, modeling was performed using multiple regression analysis. Among the developed models, the Polynomial statistical model with non-integer coefficients model with an adjusted coefficient of determination 0.885 was identified as the best-performing model and was subsequently used as the objective function in the Firefly Algorithm. The optimization process was then carried out using this algorithm. According to the findings of this research, the implementation of the current operational patterns in the mine along with the optimized proposed patterns resulted in a reduction of 4 meters in the average back-break, decreasing it from 7.5 meters in the waste rock section. The results demonstrate that the Firefly Algorithm is a highly effective and reliable tool for model optimization and a more accurate reduction of back-breaks. This approach has the potential to significantly enhance the efficiency of mining operations and reduce operational costs.
H. hadizadeh Ghaziania; M. Monjezi; A. Mousavi; H. Dehghani; E. Bakhtavar
Abstract
The production cycle in open-pit mines includes the drilling, blasting, loading, and haulage. Since loading and haulage account for a large part of the mining costs, it is very important to optimize the transport fleet from the economic viewpoint. Simulation is one of the most widely used methods in ...
Read More
The production cycle in open-pit mines includes the drilling, blasting, loading, and haulage. Since loading and haulage account for a large part of the mining costs, it is very important to optimize the transport fleet from the economic viewpoint. Simulation is one of the most widely used methods in the field of fleet design. However, it is unable to propose an optimized scenario for which the appropriate metaheuristic method should be employed. This paper considers the Sungun copper mine as the case study, and attempts to find the most feasible transportation arrangement. In the first step, in this work, we compare the flexible dispatching with the fixed allocation methods using the Arena software. Accordingly, the use of flexible dispatching reveals the increase in the production rate (20%) and productivity (25%), and the decrease (20%) in the idle time. The firefly metaheuristic algorithm used in the second step shows that the combined scenario of the 35-ton and 100-ton trucks is the most suitable option in terms of productivity and cost. In another attempt, comparing different heterogeneous truck fleets, we have found that the scenarios 35-100 and 35-60-100-144 increase the production rate by 39% and 49%, respectively. Also, in both scenarios, the production cost decreases by 11% and 21%, respectively.