Rock Mechanics
Mohammad Rezaei; Seyed Pourya Hosseini; Danial Jahed Armaghani; Manoj Khandelwal
Abstract
This paper presents an experimental-statistical study investigating the influence of five joint properties: density, filling type, angle, aperture, and roughness on the longitudinal wave velocity (LWV) of concrete samples. To achieve this, each of the five properties is categorized into distinct groups ...
Read More
This paper presents an experimental-statistical study investigating the influence of five joint properties: density, filling type, angle, aperture, and roughness on the longitudinal wave velocity (LWV) of concrete samples. To achieve this, each of the five properties is categorized into distinct groups with specific intervals. Concrete samples measuring 15*15*15 cm are prepared in the laboratory based on an optimal combination of 75% sand, 15% cement, and 10% water. The LWV values of these samples are then measured. The experimental results indicate that joint density, roughness, and aperture have an inverse relation with LWV, resulting in reductions of 82%, 22.5% and 49%, respectively. Additionally, an approximate sinusoidal relationship between LWV and joint angle is established, leading to a variation of approximately 10% in LWV values for different joint angles. To evaluate the effect of joint filling on LWV, various filling materials, including iron oxide, calcite, silica, clay, and gypsum are used, resulting in approximately a 34% variation in LWV values. It was found that gypsum filling yields the highest LWV value while iron oxide filling produces the lowest. Furthermore, analysis of variance (ANOVA) confirms that a polynomial quadratic equation best represents the relation between LWV and each of the joint characteristics, with determination coefficient (R2) values ranging from 0.694 to 0.99. Finally, a verification study using "validation samples" demonstrates the acceptable accuracy for the proposed equations, with minimum relative errors ranging from 3% to 13%, a low root mean square error of 189.08 m/s, and a high R2 value of 0.926. This research enhances understanding of wave propagation through jointed rock masses with varying joint characteristics and provides theoretical support for rock reorganization and dynamic stability analysis of rock masses.
A. Mirzaghorbanali; N. Aziz
Abstract
The load transfer mechanisms of cable bolts differ from those for normal rebar bolts. The cable bolts used in mines are basically steel strands with different constructions depending on the number of wires or elements and the way they are laid. Tendon bolts (rebar and cable) are normally evaluated for ...
Read More
The load transfer mechanisms of cable bolts differ from those for normal rebar bolts. The cable bolts used in mines are basically steel strands with different constructions depending on the number of wires or elements and the way they are laid. Tendon bolts (rebar and cable) are normally evaluated for their strength and load transfer properties. The tendon strength can be evaluated by the tensile failure tests, while the load transfer strength is evaluated by the pull and shear strength tests. Short Encapsulation Pull Testing (SEPT) is normally used to study the load transfer capacities of tendons, and it can be undertaken in both the laboratory and in situ. A new apparatus known as Minova Axially Split Embedment Apparatus (MASEA) was used to study load-displacement characteristics of smooth versus spiral profile cable bolts. Minova Stratabinder grout was used for encapsulating 400-mm long 19 wire 22-mm diameter superstrand cable in embedment units. The anchorage of the cable on the two sides of the embedment apparatus were intentionally installed at different lengths to allow the cable to be pulled out from one side of the anchorage. The spiral wire strand cable bolts achieved a higher peak pull-out load at a minimum displacement in comparison with the smooth surface wire strand. The peak pull out force increased with the age of encapsulation grout. The use of MASEA was easier to assemble and test at a short period of time, thus allowing the quick and repeated tests undertaken.