M. Fakhrerad; A. Nejati Kalateh; S. Ghomi
Abstract
Coastal Fars gravimetry project in Fars province was carried out to find the buried salt domes and to determine characteristics of faults in this area. The Lavarestan structure was covered by 4203 gravimetry stations in a regular grid of 1000*250 m. Depth structural model of this anticline made in previous ...
Read More
Coastal Fars gravimetry project in Fars province was carried out to find the buried salt domes and to determine characteristics of faults in this area. The Lavarestan structure was covered by 4203 gravimetry stations in a regular grid of 1000*250 m. Depth structural model of this anticline made in previous studies was based on geological evidences and structural geology measurements. In order to have a complete coverage of Lavarestan anticline, 4 profiles with appropriate intervals were selected on gravity data for further processing and interpretation. 2D inverse modeling was performed on these profiles using Encome Modelvision and Encome PA software. Geometrical and physical parameters of each layer were changed step by step and forward gravity calculations were repeated until we reached a desirable fitting between observed and calculated gravity anomaly. The results of 2D gravity modeling were focused on Lower Paleozoic and Kazerun (cap rock) top horizon, also the underground contour map was extracted from seismic data after interpretation. The results show appropriate correlation between the underground contour map of 2D gravity modeling and interpretation of seismic data.
Maysam Abedi; Kiomars Mosazadeh; Hamid Dehghani; Ahmad MadanchiZare
Abstract
We have applied an automatic interpretation method of potential data called AN-EUL in unexploded ordnance (UXO) prospective which is indeed a combination of the analytic signal and the Euler deconvolution approaches. The method can be applied for both magnetic and gravity data as well for gradient surveys ...
Read More
We have applied an automatic interpretation method of potential data called AN-EUL in unexploded ordnance (UXO) prospective which is indeed a combination of the analytic signal and the Euler deconvolution approaches. The method can be applied for both magnetic and gravity data as well for gradient surveys based upon the concept of the structural index (SI) of a potential anomaly which is related to the geometry of the anomaly sources. With AN-EUL method, both the depth and the approximate geometry (or SI) of the causative sources can be deduced. A realistic model for UXO to be simulated by a simple shape body is a prolate spheroid. The method is applied for both synthetic potential data assuming a collection of causative UXO sources replicating various sizes placed at different depths. In both cases, the estimated depth and the SI of the synthetic UXOs approximately correspond to the synthetic model parameters. The location detection of the causative sources is based upon the Blakely automatic picking algorithm. For both data sets, since the anomaly responses of the small UXOs are affected by noise, the estimated SI is a bit disturbed but the locations correspond to the real ones. The Blakely algorithm also identifies weak anomalies that are due to noise in data; thus, a post-processing of the estimated SI of the automatically detected sources may be needed to prevent false alarm sources in UXO exploration. Two field data sets have been provided to demonstrate the capability of the applied methods in UXO detection.
A. H. Ansari; K. Alamdar
Abstract
Potential field methods such as gravity and magnetic methods are among the most applied geophysical methods in
mineral exploration. A high-resolution technique is developed to image geologic boundaries such as contacts and faults.
Potential field derivatives are the basis of many ...
Read More
Potential field methods such as gravity and magnetic methods are among the most applied geophysical methods in
mineral exploration. A high-resolution technique is developed to image geologic boundaries such as contacts and faults.
Potential field derivatives are the basis of many interpretation techniques. In boundary detection, the analytic signal
quantity is defined by combining the values of horizontal and vertical derivatives. The outlines of the geologic
boundaries can be determined by tracing the maximum amplitudes of analytic signal. However, due to superposition
effects, in some cases that a variety of sources are adjacent, the detected boundaries are blurred. To overcome this
problem, this study used enhanced analytic signal composed of the nth- order vertical derivative of analytic signal. The
locations of its maximum amplitudes are independent of magnetization direction and geomagnetic parameters. This
technique is particularly suitable when interference effects are considerable and when remanent magnetization is not
negligible. In this paper this technique has been applied to gravity data of southwest England. Using this method, five
granites outcrops and their separating faults are enhanced accurately.