Akbar Esmaeilzadeh; Sina Shaffiee Haghshenas; Reza Mikaeil; Giuseppe Guido; Roohollah Shirani Faradonbeh; Roozbeh Abbasi Azghan; Amir Jafarpour; Shadi Taghizadeh
Abstract
Iran is one of the countries with the largest number of quarry mines in the world. Diamond cutting wire is usually used in quarries to cut dimension stone cubes, which is accompanied by hazardous events. Therefore, detecting and investigating the possible quarry risks is crucial to have a safe and sustainable ...
Read More
Iran is one of the countries with the largest number of quarry mines in the world. Diamond cutting wire is usually used in quarries to cut dimension stone cubes, which is accompanied by hazardous events. Therefore, detecting and investigating the possible quarry risks is crucial to have a safe and sustainable mining operation. In mine exploitation, maintaining the safety of vehicles and increasing the knowledge of personnel regarding safety issues can considerably mitigate the number or radius of effect of hazards. Hence, the incidents and risks in the West-Azerbaijan quarries in Iran are investigated in this work. To do so, a list of the hazards and their descriptions are first prepared. Then the hazard risk rating is conducted using the Failure Modes and Effects Analysis (FMEA) method. The number of priorities is calculated for each incident based on probability, intensity, and risk detection probability. Finally, the main causes of risks in the studies quarries are identified. The results obtained show that the most likely dangers in dimensional stone mines in West Azerbaijan are diamond cutting wire breaking, rock-fall, and car accidents, with the priority numbers of 216, 180, and 135, respectively. These hazards can be mitigated by applying some preservative activities such as timely cutting wire replacement, utilizing an intelligent system for cutting tool control, necessary personal training, and considering some preservative points.
Rock Mechanics
J. Mohammadi; M. Ataei; R. Kakaie; R. Mikaeil; S. Shaffiee Haghshenas
Abstract
Prediction of the production rate of the cutting dimensional stone process is crucial, especially when chain saw machines are used. The cutting dimensional rock process is generally a complex issue with numerous effective factors including variable and unreliable conditions of the rocks and cutting machines. ...
Read More
Prediction of the production rate of the cutting dimensional stone process is crucial, especially when chain saw machines are used. The cutting dimensional rock process is generally a complex issue with numerous effective factors including variable and unreliable conditions of the rocks and cutting machines. The Group Method of Data Handling (GMDH) type of neural network and Radial Basis Function (RBF) neural network, as two kinds of the soft computing method, are powerful tools for identifying and assessing the unpredicted and uncertain conditions. Hence, this work aims to develop prediction models for estimating the production rate of chain saw machines using the RBF neural network and GMDH type of neural network, and then to compare the results obtained from the developed models based on the performance indices including value account for, root mean square error, and coefficient of determination. For this purpose, the parameters of 98 laboratory tests on 7 carbonate rocks are accurately investigated, and the production rate of each test is measured. Some operational characteristics of the machines, i.e. arm angle, chain speed, and machine speed, and also the three important physical and mechanical characteristics including uniaxial compressive strength, Los Angeles abrasion test, and Schmidt hammer (Sch) are considered as the input data, and another operational characteristic of the machines, i.e. production rate, is considered as the output dataset. The results obtained prove that the developed GMDH model is able to provide highly promising results in order to predict the production rate of chain saw machines based on the performance indices.