B. Shokouh Saljoughi; A. Hezarkhani
Abstract
In this paper, we aim to achieve two specific objectives. The first one is to examine the applicability of wavelet neural network (WNN) technique in ore grade estimation, which is based on integration between wavelet theory and Artificial Neural Network (ANN). Different wavelets are applied as activation ...
Read More
In this paper, we aim to achieve two specific objectives. The first one is to examine the applicability of wavelet neural network (WNN) technique in ore grade estimation, which is based on integration between wavelet theory and Artificial Neural Network (ANN). Different wavelets are applied as activation functions to estimate Cu grade of borehole data in the hypogene zone of porphyry ore deposit, Shahr-e-Babak district, SE Iran. WNN parameters such as dilation and translation are fixed and only the weights of the network are optimized during its learning process. The efficacy of this type of network in function learning and estimation is compared with Ordinary Kriging (OK). Secondly, we aim to delineate the potassic and phyllic alteration regions in the hypogene zone of Cu porphyry deposit based on the estimation obtained of WNN and OK methods, and utilize Concentration–Volume (C–V) fractal model. In this regard, at first C–V log–log plots are generated based on the results of OK and WNN. The plots then are used to determine the Cu threshold values of the alteration zones. To investigate the correlation between geological model and C-V fractal results, the log ratio matrix is applied. The results showed that, Cu values less than 1.1% from WNN have more overlapped voxels with phyllic alteration zone by overall accuracy (OA) of 0.74. Spatial correlation between the potassic alteration zones resulted from 3D geological modeling and high concentration zones in C-V fractal model showed that the alteration zone has Cu values between 1.1% and 2.2% with OA of 0.72 and finally have an appropriate overlap with Cu values greater than 2.2% with OA of 0.7. Generally, the results showed that the WNN (Morlet activation function) with OA greater than OK can be can be a suitable and robust tool for quantitative modeling of alteration zones, instead of qualitative methods.
Environment
B. Shokouh Saljoughi; A. Hezarkhani
Abstract
The Shahr-e-Babak district, as the studied area, is known for its large Cu resources. It is located in the southern side of the Central Iranian volcano–sedimentary complex in SE Iran. Shahr-e-Babak is currently facing a shortage of resources, and therefore, mineral exploration in the deeper and ...
Read More
The Shahr-e-Babak district, as the studied area, is known for its large Cu resources. It is located in the southern side of the Central Iranian volcano–sedimentary complex in SE Iran. Shahr-e-Babak is currently facing a shortage of resources, and therefore, mineral exploration in the deeper and peripheral spaces has become a high priority in this area. This work aims to identify the geochemical anomalies associated with the Cu mineralization using the Spectrum–Area (S–A) multi-fractal and Wavelet Neural Network (WNN) methods. At first, the Factor Analysis (FA) is applied to integrate the multi-geochemical variables of a regional stream sediment dataset related to major mineralization elements in the studied area. Then the S–A model is applied to decompose the mixed geochemical patterns obtained from FA and compare with the results obtained from the WNN method. The S–A model, based on the distinct anisotropic scaling properties, reveals the local anomalies due to the consideration of the spatial characteristics of the geochemical variables. Most of the research works show that the capability (i.e. classification, pattern matching, optimization, and prediction) of an ANN considering its successful application is suitable for inheriting uncertainties and imperfections that are found in mining engineering problems. In this paper, an alternative method is presented for mineral prospecting based on the integration of wavelet theory and ANN or wavelet network. The results obtained for the WNN method are in a good agreement with the known deposits, indicating that the WNN method with Morlet transfer function consists of a highly complex ability to learn and track unknown/undefined complicated systems. The hybrid method of FA, S–A, and WNN employed in this work is useful to identify anomalies associated with the Cu mineralization for further exploration of mineral resources.