M. Shenavar; M. Ataee-pour; M. Rahmanpour
Abstract
Production scheduling in underground mines is still a manual process, and achieving a truly optimal result through manual scheduling is impossible due to the complexity of the scheduling problems. Among the underground mining methods, sub-level caving is a common mining method with a high production ...
Read More
Production scheduling in underground mines is still a manual process, and achieving a truly optimal result through manual scheduling is impossible due to the complexity of the scheduling problems. Among the underground mining methods, sub-level caving is a common mining method with a high production rate for hard rock mining. There are limited studies about long-term production scheduling in the sub-level caving method. In this work, for sub-level caving production scheduling optimization, a new mathematical model with the objective of net present value (NPV) maximization is developed. The general technical and operational constraints of the sub-level caving method such as opening and developments, production capacity, sub-level mining geometry, and ore access are considered in this model. Prior to the application of the scheduling model, the block model is processed to remove the unnecessary blocks. For this purpose, the floating stope algorithm is applied in order to determine the ultimate mine boundary and reduce the number of blocks that consequently reduces the running time of the model. The model is applied to a bauxite mine block model and the maximum NPV is determined, and then the mine development network is designed based on the optimal schedule.
Mine Economic and Management
K. Shah; S. Ur Rehman
Abstract
Truck and shovel are the most common raw material transportation system used in the cement quarry operations. One of the major challenges associated with the cement quarry operations is the efficient allocation of truck and shovel to the mining faces. In order to minimize the truck and shovel operating ...
Read More
Truck and shovel are the most common raw material transportation system used in the cement quarry operations. One of the major challenges associated with the cement quarry operations is the efficient allocation of truck and shovel to the mining faces. In order to minimize the truck and shovel operating cost, subject to quantity and quality constraints, the mixed integer linear programing (MILP) model for truck and shovel allocation to mining faces for cement quarry is presented. This model is implemented using the optimization IDE tool GUSEK (GLPK under SciTE Extended Kit) and the GLPK (GNU Linear Programming Kit) standalone solver. The MILP model is applied to an existing cement quarry operation, the Kohat cement quarry located at Kohat (Pakistan) as a case study. The analysis of the results of the relating case study reveals that significant gains are achievable through employing the MILP model. The results obtained not only show a significant cost reduction but also help in achieving a better coordination among the quarry and quality department.