Exploration
Kaustubh Sinha; Priyangi Sharma; Anurag Sharma; Kanwarpreet Singh; Murtaza Hassan
Abstract
In this expansive study, a thorough analysis of land subsidence in the Joshimath area has been conducted, exercising remote sensing (RS) and Geographic Information System (Civilians) tools. The exploration encompasses colourful pivotal parameters, including Annual Rainfall, Geology, Geomorphology, and ...
Read More
In this expansive study, a thorough analysis of land subsidence in the Joshimath area has been conducted, exercising remote sensing (RS) and Geographic Information System (Civilians) tools. The exploration encompasses colourful pivotal parameters, including Annual Rainfall, Geology, Geomorphology, and Lithology, rounded by the integration of different indicators. Joshimath, a fascinating city nestled within the rugged geography of the Indian state of Uttarakhand, stands out for its unique geographical features and its vulnerability to environmental vulnerabilities. The disquisition is carried out with the backing of ArcMap software, a technical Civilians tool, while exercising data sourced from the recognized Indian Space Research Organisation (ISRO) and the National Remote seeing Centre (NRSC). This comprehensive approach aims to give inestimable perceptivity into the dynamic processes associated with land subsidence in the region, offering critical data for disaster mitigation strategies and sustainable land operation in the area. It's noteworthy that the region endured a significant case of land subsidence in late December 2022, emphasizing the punctuality and applicability of this study. This event not only emphasizes the urgency of comprehending land subsidence in Joshimath but also underscores the necessity for ongoing monitoring and mitigation sweats. The integration of these different data sources and logical ways promises to enhance the understanding of land subsidence dynamics and inform decision- makers in the pursuit of flexible and sustainable land use practices in Joshimath and other also vulnerable regions.
A. Owolabi
Abstract
In this paper, we report a geospatial assessment of the selected mine sites in the Plateau State, Nigeria. The aim of this work is to determine the impact of mining on the terrain as well as the Land Use/Land Cover (LULC) of the host communities. The Shuttle Radar Topographic Mission (SRTM) is used for ...
Read More
In this paper, we report a geospatial assessment of the selected mine sites in the Plateau State, Nigeria. The aim of this work is to determine the impact of mining on the terrain as well as the Land Use/Land Cover (LULC) of the host communities. The Shuttle Radar Topographic Mission (SRTM) is used for the terrain mapping. The derived impact of mining on LULC between 1975 and 2014 is determined by classifying the relevant Landsat imageries. The digital terrain map reveal that the mining activity is not well-coordinated. Hence, the parts of the mine sites that are rich in the desired minerals are punctuated with low depth, while the other parts have high terrain as a result of the haphazard mining activity. The analysis of the LULC change show that the degraded land (DL), built-up area (BU), water bodies (WB), and exposed rock outcrop (RO) increase by 15.68%, 4.68%, 0.06%, and 14.5%, respectively, whereas the arable farmland (FL) and forest reserve (FR) decrease by 28.29% and 6.63%, respectively. Mining has adversely affected the natural ecology of the studied area. Therefore, the mine sites should be monitored, and their environmental damages should be pre-determined and mitigated. There should be regular inspections to keep these activities under control. The existing laws and regulations to conserve the natural ecosystems of the host communities should be enforced to curtail the excesses of the operators of the mining industries. Restoration of the minefields to reduce the existing hazards prevent further environmental degradation, and facilitating the socio-economic development of the area is also suggested.