Exploitation
Heydar Bagloo; Mohsen Soleiman Dehkordi
Abstract
Loading and haulage operations in open-pit mining represent a significant portion of overall costs. Among various load and transport systems, the shovel-truck method is favored for its flexibility. Consequently, extensive research has been conducted to optimize this system, resulting in numerous productivity-enhancing ...
Read More
Loading and haulage operations in open-pit mining represent a significant portion of overall costs. Among various load and transport systems, the shovel-truck method is favored for its flexibility. Consequently, extensive research has been conducted to optimize this system, resulting in numerous productivity-enhancing methods. However, evaluating the effectiveness of these optimization techniques, particularly in short-term mining activities under varying operational conditions, remains essential. Additionally, understanding how changes in operational conditions impact productivity is important for addressing production fluctuations in daily mining operations. To tackle these challenges, this study uniquely applies advanced machine learning techniques to short-term mining planning, resulting in the development of a real-time Productivity Evaluation Model (PEM) based on supervised learning methods for optimizing truck-shovel operations in open-pit mining. The model, developed and tested using data from a large-scale mining operation in Iran, demonstrated that the Decision Tree was the most effective, achieving an R² value of 0.96. This was closely followed by Random Forest and Gradient Boosting, both with R² values of 0.95. However, the choice of the most suitable learning method may vary depending on the specific dataset and context. The model determines the most appropriate learning method for each dataset within specific mining operations.
Exploitation
Hossein Mirzaei Nasir Abad; Mehrnaz Mohtasham; Farshad Rahimzadeh-Nanekaran
Abstract
Transportation of materials is the most cost-intensive component in open-pit mining operations. The aim of the allocation models is to manage and optimize transportation activities, leading to reduced wasted time, and ultimately, increasing profitability while reducing operational costs. Given that the ...
Read More
Transportation of materials is the most cost-intensive component in open-pit mining operations. The aim of the allocation models is to manage and optimize transportation activities, leading to reduced wasted time, and ultimately, increasing profitability while reducing operational costs. Given that the implementation of allocation models is one of the essential requirements in Iranian mining operations, this research work focuses on the transportation system in the Sungun copper mine, one of the largest mines in Iran, and highlights the challenges faced by the fixed allocation approach. The aim is to develop and implement a mathematical model to evaluate its performance, and suggest improvements. The allocation model attempts to optimize truck capacity utilization and maximize mining production. Implementing the model in the mine results in a 13.42% increase in total production compared to the conventional method, with a cost increase of 14.7%. The model shows the potential to meet operational and technical constraints to achieve optimal production. Overall, the developed model, with optimized management and improved fleet efficiency, outperforms the traditional haulage method in the mine.
Exploitation
Israel Mamani; Angelica Vivanco; Eslainer Avendaño
Abstract
In open-pit mining operations, loading and haulage activities account for a significant portion, typically between 50% and 60%, of the operational costs of the entire mining process. Tires, in turn, rank second in terms of operating costs for most mining companies. Therefore, understanding and preserving ...
Read More
In open-pit mining operations, loading and haulage activities account for a significant portion, typically between 50% and 60%, of the operational costs of the entire mining process. Tires, in turn, rank second in terms of operating costs for most mining companies. Therefore, understanding and preserving the useful life of Off-The-Road (OTR) tires is a critical factor in ensuring the profitability of a mining project. This study focuses on a specific mine to analyze the causes of operational damage in the tires of Mining Trucks (MTs) and Front-End Loaders (FELs). It aims to identify the factors leading to the premature disposal of these tires, and propose solutions to increase their useful life. The study identifies four key aspects that influence the low performance of extraction equipment, namely operator experience, environmental condition, raw materials, and equipment condition. Additionally, the study reveals that overinflation pressure significantly contributes to the premature disposal of tires, accounting for 70.5% of MT tire damage and 52.5% of FEL tire damage (primarily affecting MT rear and FEL front tires). The use of tire chains is proposed as a solution, with the potential to decrease the unit cost per labor hour by 28% for at least 50% of the tires.