%0 Journal Article %T Effects of Flocculant, Surfactant, Coagulant, and Filter Aid on Efficiency of Filtration Processing of Copper Concentrate: Mechanism and Optimization %J Journal of Mining and Environment %I Shahrood University of Technology %Z 2251-8592 %A Rezaei, A.H. %A Abdollahi, H. %A Gharabaghi, M. %A Mohammadzadeh, A. A. %D 2020 %\ 01/01/2020 %V 11 %N 1 %P 119-141 %! Effects of Flocculant, Surfactant, Coagulant, and Filter Aid on Efficiency of Filtration Processing of Copper Concentrate: Mechanism and Optimization %K Vacuum filter %K Additives %K Water Recovery %K Cake formation rate %K Moisture content %R 10.22044/jme.2019.8692.1753 %X In the recent decades, water scarcity has become a major challenge for many reasons, especially the inadequate use of water resources. The mineral processing plant is among the most important water-consuming industries. Filtration, as one of the important processes in water recovery, is a process in which the solid-suspended particles are removed from the liquid. In the present work, the effect of the additives affecting the filtration process upon the responses including the resistance to filter cloth (R), specific cake resistance (α), moisture content, water recovery rate, and cake formation rate by the vacuum top-feed method is investigated. The experiments are performed by two methodologies: one-factor-at-a-time and statistical analysis. The additives are the flocculant, coagulant, surfactant, and filter aid. According to the one-factor-at-a-time methodology, the optimal type and dosage of the variables are as follow: flocculant A25 with a concentration of 15 g/L, perlite as the filter aid with an amount of 2.5%, surfactant cop 20-101 with a concentration of 3 cc/L, and the coagulant CaCl2.2H­2O with a concentration of 2.5 g/L. The usage of the flocculant, surfactant, and filter aid at the same time is also statistically analyzed with the aim of maximizing the cake formation rate and minimizing the moisture content of the filter cake. Under the optimal conditions and taking into account 11.68 g/t of the flocculant A25, 3.8% of perlite as the filter aid, and2.92 cc/L of the surfactant cop 20-101, the cake formation rate and the moisture content were obtained to be 0.297 mm/s and 12.7 %, respectively. %U https://jme.shahroodut.ac.ir/article_1649_bc43b74f8c1b05d5e3d5375616f27f95.pdf