%0 Journal Article
%T Approximate resistivity and susceptibility mapping from airborne electromagnetic and magnetic data, a case study for a geologically plausible porphyry copper unit in Iran
%J Journal of Mining and Environment
%I Shahrood University of Technology
%Z 2251-8592
%A Abedi, Maysam
%A Norouzi, Gholam-Hossain
%A Fathianpour, Nader
%A Gholami, Ali
%D 2013
%\ 10/01/2013
%V 4
%N 2
%P 133-146
%! Approximate resistivity and susceptibility mapping from airborne electromagnetic and magnetic data, a case study for a geologically plausible porphyry copper unit in Iran
%K Electromagnetic and Magnetic data
%K Approximate inversion
%K Electrical resistivity
%K Magnetic susceptibility
%K Porphyry copper unit
%R 10.22044/jme.2013.266
%X This paper describes the application of approximate methods to invert airborne magnetic data as well as helicopter-borne frequency domain electromagnetic data in order to retrieve a joint model of magnetic susceptibility and electrical resistivity. The study area located in Semnan province of Iran consists of an arc-shaped porphyry andesite covered by sedimentary units which may have potential of mineral occurrences, especially porphyry copper. Based on previous studies, which assume a homogenous half-space earth model, two approximate methods involving the Siemon and the Mundry approaches are used in this study to generate a resistivity-depth image of underground geologically plausible porphyry unit derived from airborne electromagnetic data. The 3D visualization of the 1D inverted resistivity models along all flight lines provides a resistive geological unit which corresponds to the desired porphyry andesite. To reduce uncertainty arising from single geophysical model, i.e., the resistivity model acquired from the frequency domain electromagnetic data, a fast implementable approach for 3D inversion of magnetic data called the Lanczos bidiagonalization method is also applied to the large scale airborne magnetic data in order to construct a 3D distribution model of magnetic susceptibility, by which the obtained model consequently confirms the extension of an arc-shaped porphyry andesite at depth. The susceptible-resistive porphyry andesite model provided by integrated geophysical data indicates a thicker structure than what is shown on the geological map while extends down at depth. As a result, considering simultaneous interpretation of airborne magnetic and frequency domain electromagnetic data certainly yield lower uncertainty in the modeling of andesite unit as a potential source of copper occurrences.
%U https://jme.shahroodut.ac.ir/article_266_75fc9ebcac74e12095abe774941a5b6d.pdf